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Abstract—Context: Infrastructure-as-code (IaC) is a DevOps
practice that facilitates the management and provisioning of
infrastructure by utilizing machine-readable files known as IaC
scripts. Similarly to other types of source code artifacts, these
scripts are susceptible to defects that may hinder their function-
ality. Objective: We conjecture that Program Dependence Graph
(PDG) metrics may provide insights into the defectiveness of IaC
scripts and, based on such a conjecture, we propose to develop
and empirically evaluate a new defect prediction model based on
PDG metrics. Method: We plan to extract the PDG metrics from
137 open-source Ansible projects and train five machine learners
to assess their capabilities in a within-project scenario, other
than comparing them with a state-of-the-art defect predictor
relying on structural and process IaC-oriented metrics. Finally,
we plan to assess the performance of a combined model that
mixes together PDG and existing IaC-oriented metrics.

Index Terms—Infrastructure-as-Code; Defect prediction; Soft-
ware Quality; Empirical Software Engineering.

I. INTRODUCTION

DevOps [17] enables the automation of the software lifecy-
cle at both development and operation levels. In this context,
Infrastructure as Code (IaC) has emerged as the practice
of automating the process of deploying and maintaining
infrastructure through executable source code scripts [28].
Configuration management tools, e.g., Ansible [22], Chef [18],
and Puppet [27], enable practitioners to employ IaC scripts for
configuring the machines in their infrastructure programmati-
cally. For instance, they can install software dependencies and
manage configuration files. The adoption of these tools has
been increasing rapidly [21], with Ansible emerging as one of
the most popular solutions [25]. Nonetheless, Infrastructure
as Code remains source code that may exhibit the same
flaws as application code, e.g., code smells [31], [42]–[44],
defects [35], [36], [40], [41], or security concerns [38]. These
issues may notably impact the reliability and maintainability
of infrastructure code and have several negative implications,
e.g., hot service stand-by [3] or costly elastic provisioning [9].

 In the context of our work, we focus on identifying
defective Ansible scripts, attempting to extend the cur-
rent state of the art related to using machine learning
algorithms for defect prediction.

More specifically, defect prediction [45] relies on machine
learning algorithms to identify the portions of source code
more likely to exhibit defects, allowing developers to take ap-
propriate mitigation plans, e.g., test case prioritization. When
considered in the context of IaC, the effective prediction of
defect-prone IaC scripts may help organizations embracing
the DevOps principles to focus on the most critical scripts
during quality assurance activities and find a better way to
allocate effort and resources. The current state of the art in IaC
defect prediction is represented by the work by Dalla Palma
et al. [14], who proposed the so-called RADON framework:
this is a machine learning-based framework that supports the
prediction of defect-prone Ansible scripts through the use of
a mixture of product and process metrics, e.g., lines of code
or average task size of an Ansible script. While the empirical
study conducted on RADON showed that it may predict defect-
prone scripts with high accuracy, Dalla Palma et al. [14]
also pointed out that further metrics able to characterize
orthogonal properties of Ansible scripts may further improve
defect prediction capabilities.

◎ We hypothesize that novel metrics computed on top
of a Program Dependence Graph (PDG) representation
of Ansible scripts [31] may improve the performance of
IaC defect prediction models.

A PDG representation captures both the control and data
flow of Ansible scripts, providing an improved mechanism
to analyze the inner working of those scripts. This paper
overviews our research method to address our hypothesis: we
propose a confirmatory empirical investigation where we will
(1) collect a new set of 17 metrics based on the program depen-
dence graph of Ansible scripts—the definition of these metrics
comes from the adaptation of concepts and metrics proposed
by previous research; (2) devise a new defect prediction
model based on the newly defined metrics; and (3) evaluate
the performance of the model, assessing the contribution of
the metrics both in isolation and when combined with the
metrics employed by Dalla Palma et al. [14]. We finally assess
statistically whether PDG metrics contribute to the prediction
of defective IaC scripts.
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II. BACKGROUND AND MOTIVATION OF OUR STUDY

This section first provides a gentle introduction to Infras-
tructure as Code and, afterwards, presents a running example
showing the rationale behind our hypothesis.

A. Infrastructure as Code

Infrastructure as code (IaC) is a method to create and man-
age computing environments where software systems will op-
erate and be controlled using reusable scripts of infrastructure
code [28]. There are many languages and platforms for dif-
ferent aspects of infrastructure management, such as tools for
creating and managing virtual machines (Cloudify, Terraform),
tools for handling container technologies (Docker Swarm,
Kubernetes), tools for building machine images (Packer), and
tools for configuring systems (Ansible, Chef, Puppet).

Our experiments focus on Ansible because it is one of the
most popular tools among practitioners [21]. This automation
engine leverages the YAML language and automates cloud
provisioning, configuration management, and application de-
ployment. In Ansible, a playbook defines an IT infrastructure
automation workflow as a sequence of ordered tasks that apply
to one or more inventories of managed infrastructure nodes. A
module is a segment of code that a task invokes. A module has
a specific purpose, for example, creating a MySQL database
and installing an Apache webserver. A role combines tasks and
resources that accomplish a specific goal, such as installing
and configuring MySQL.

Listing 1 depicts an example of an Ansible playbook that
deploys an application on all hosts in an inventory, as indicated
on line 2. The playbook defines one variable, app_version
(line 4), whose value is generated using the current timestamp.
Subsequently, it defines two tasks, the first of which (lines 6–
9) will ensure that a directory exists for this version using the
file module, which manages file system contents. It refers to
the app_version variable by means of an expression (line
8), demarcated by double braces. The second task (lines 10–
13) then pulls sources from a git repository into this directory
by referring to the same variable.

1 - name: Deploy application
2 hosts: all
3 vars:
4 app_version: "{{ lookup(’pipe’, ’date +%Y%m%d

%H%M%S’) }}"
5 tasks:
6 - name: Create directory
7 file:
8 path: "/app/releases/{{ app_version }}"
9 state: directory

10 - name: Pull sources into directory
11 git:
12 repo: https://github.com/my/repo
13 dest: "/app/releases/{{ app_version }}"

Listing 1. Example of an Ansible playbook.

B. Our Working Hypothesis Explained

Although Ansible code is written in YAML and, therefore,
easy to parse, the resulting tree-based representation contains
little information regarding the behavior of the script. For

file git
ORDER

directory

args.state
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args.repo

/app/releases/

{{ app version }}

args.path

/app/releases/

{{ app version }}

args.dest

app version (v0)

USE

app version (v1)

USE

{{ lookup(‘pipe’, ‘date +%Y%m%d%H%M%S’) }}

DEF DEF

Action Expression Named value Literal Control flow Data flow

Fig. 1. Program dependence graph for the example of Listing 1.

instance, the tree cannot link a variable reference in an expres-
sion to the definition of this variable (i.e., definition-use pairs).
To alleviate this limitation, Opdebeeck et al. [31] proposed
the Program Dependence Graph (PDG) representation for
Ansible scripts. Their PDG is a graph capturing the control
flow and data flow of an Ansible script. Nodes in the graph
represent script elements, such as tasks, expressions, variables,
and literal data values. Edges represent either control flow
(between tasks) or various types of data flow (between data
and tasks). To exemplify, Figure 1 depicts the PDG for the
example provided in Listing 1. We can see the two tasks
as oval nodes labeled by the module they invoke. Moreover,
the expressions, literal values, and variables present in the
playbook are depicted and connected via data-flow edges.
Importantly, we can observe that there exist two separate nodes
to represent the app_version variable. This behavior is be-
cause Ansible lazily evaluates variable initializers. Therefore,
the initializer will be re-evaluated for each variable reference.
Since the expression generating the current timestamp may
change arbitrarily, each variable reference thus resolves to a
different possible abstract value. In fact, this is a defect in the
example playbook, which will create one directory but pull the
git repository into another one. Based on this example, we can
draw a key consideration: this defect may be solely identified
using data flow analysis, as it is connected to the way variables
are used rather than how they are defined. Consequently,
metrics computed on top of a tree-based representation of
Ansible scripts could not identify the defect. For this reason,
RADON would fail for this case [14]. In contrast, a PDG
representation may enable an orthogonal analysis of Ansible
defects—our work defines novel metrics accounting for the
usage of variables (e.g., the edgesCount later described in
Table I). Therefore, we hypothesize that features extracted
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from these graphs may enable machine learning models to
predict defects more accurately. The remainder of the paper
describes how this hypothesis will be addressed.

III. EMPIRICAL STUDY DESIGN

The goal of the study is to evaluate whether metrics
extracted from the program dependence graph are suitable for
the defect prediction model in a within-project setup, with the
purpose of improving the early detection of defects in IaC
scripts. The perspective is of researchers who are interested
in improving the effectiveness of defect prediction models
applied in the context of Infrastructure as Code.

A. Research Questions

Our empirical investigation will aim at addressing the
following research questions (RQs):

RQ1. Which metrics related to the program dependence
graph are good defect predictors?

RQ2. What is the best defect prediction model based on the
metrics derived from PDG?

RQ3. To what extent the PDG model is complementary to
the state-of-the-art model?

RQ4. Does a combination of PDG-based, structural, and
process metrics boost the performance of IaC defect predic-
tion?

With RQ1, we seek to understand which metrics related to
the program dependence graph contribute the most to detecting
defects in IaC scripts. These observations will be used to (i)
quantify the predictive power of metrics based on the program
dependence graph (PDG) and (ii) identify the most promising
features to include in a prediction model of failure-prone
IaC scripts. In RQ2, we employ the most promising metrics
coming from RQ1 in experimentation aimed at establishing
the best machine learning model relying on PDG metrics.
We will then perform a further step ahead, namely that of
understanding how complementary is the model coming from
RQ2 with respect to the state-of-the-art model proposed by
Dalla Palma et al. [14]. The outcome of RQ3 will reveal
insights into the potential added value of the model based
on PDG metrics: such potential will be finally quantified in
RQ4, where we will experiment with how different feature
sets behave independently from each other and how they
augment each other. As a last step, we will address our
working hypothesis by defining a more specific pair of null
and alternative hypotheses, whose validity will be statistically
addressed. To design and report our study, we will follow
the empirical software engineering guidelines by Wohlin et
al. [47], other than the ACM/SIGSOFT Empirical Standards.1

1 Available at https://github.com/acmsigsoft/EmpiricalStandards.

B. Context Selection

We will first collect data from the dataset of 137 open-
source Ansible projects, publicly available on GITHUB and
released by Dalla Palma et al. [14]. The dataset will allow us
to compare the performance of models trained using structural,
process, and PDG metrics. As the number of defects in these
projects ranges from nine to 1,658; we are likely to employ
data balancing before training the within-project models.

C. Empirical Study Variables

The first step to answer the research questions posed in
our study concerned the definition of the empirical study
variables, namely (1) the dependent variable to predict and
(2) the features to be used as independent variables.

1) Dependent Variable: The goal of our study is to auto-
matically detect the presence of a defect in infrastructural code
components. Therefore, as a dependent variable, we will rely
on a binary value indicating the presence/absence of a bug.

2) Independent Variables: We have already performed a
literature analysis to understand how PDG metrics could
be applied in IaC. We obtained a set of metrics based on
the analysis of program dependence graph [2], [34], which
consider several characteristics such as the program size,
complexity, coupling, and cohesion to capture the program
behavior. However, such metrics were proposed for procedural
code (i.e., implemented for the C language); therefore, we
performed an additional analysis to tailor their concepts, e.g.,
slices and files, to IaC, e.g., tasks and playbooks. Table I
shows the complete set of metrics we will experiment with.
The metrics will be extracted using the PDGs proposed by
Opdebeeck et al. [31], [32]. In this respect, it is worth noting
that while we plan to operationalize all the metrics, we might
still end up with inconsistency issues due to the assumptions
made by PDGs proposed by Opdebeeck et al. [31], [32], e.g.,
taskCount, taskCoverage, taskSize, and taskIdentifier represent
concepts close to some ICO metrics, whereas pdgVerticesSum
and taskSpatial have a similar definition to verticesCount and
taskCoverage. Should this happen, we might be enforced to
exclude some metrics when executing our research plan.

Specifically, we will use their builder to create the PDG
for each playbook and role in each project. However, their
approach constructs whole-project PDGs that may represent
multiple files, whereas our dependent variable has file-level
granularity. Note that we cannot build a PDG for single files as
this may incorrectly approximate data flow, as pointed out by
Opdebeeck et al. [31]. Instead, we will implement a PDG slicer
where each slice represents an individual file. We can then
extract the metrics listed in Table I for each individual slice.
To validate the implemented PDG slicer and metrics extractor,
we will perform a manual analysis. We plan on selecting a
statistically significant sample of the PDG slices (confidence
level=95%, margin of error=5%) and, for each slice, we will
manually compare the slice to the file from which it originates
to validate the slicer. Moreover, we will manually calculate the
PDG metrics for the sample to validate our metric extractor
and to gauge the accuracy of the metrics.

3

https://github.com/acmsigsoft/EmpiricalStandards


This validation will be carried out by the second author,
who will go through the slices and assess whether they include
all the information of the tasks. On a weekly basis, the first
and third authors will virtually meet the second author to (i)
double-check the activities performed and (ii) discuss corner
cases or complex slices that could not be successfully analyzed
by the second author alone. Upon execution of the study, we
will discuss the major insights from the manual validation,
reporting the number of times the slices will perfectly match
the tasks, other than the outcome of the weekly meetings.

D. Machine Learning for Defect Prediction

The following illustrates how we plan to leverage machine
learning classification.

1) Selecting Machine Learning Algorithms: In the context
of our study, we will experiment with multiple machine
learning classifiers. First, we will include Naive Bayes [16]
and Logistic Regression [26] as classifiers that do not require
much training data. Then, we will consider Decision Tree [20],
Random Forest [8], and Support Vector Machine [30], which
are more flexible and powerful classifiers. The selection is
mainly driven by our willingness to conduct a fair comparison
with the state of the art. Indeed, our study builds on top
of the findings by Dalla Palma et al. [14] and verifies the
contributions brought by PDG metrics to IaC defect prediction:
as such, we opt for the use of the same set of classifiers used
in the baseline study [14]. In this way, our work may provide
insights into the usefulness of PDG metrics as defect predictors
by keeping the same working environment as Dalla Palma et
al. [14] in an effort to provide the research community with
results that may be more easily interpreted and compared.
The assessment of more sophisticated approaches, e.g., deep
learning, should therefore be considered out of the scope of
this study and part of future research efforts.

2) Configuration and Training: When training the selected
machine learners, we need to consider that class imbalance is
one of the major obstacles to proper classification by super-
vised learning algorithms [4]. This observation is particularly
true in defect prediction, where the neutral class outnum-
bers the failure-prone class. We will experiment with several
under- and over-sampling configurations to overcome this
obstacle. Specifically, we will consider using the NEARMISS
1, NEARMISS 2, and NEARMISS 3 algorithms for the under-
sampling. Finally, we will experiment with a RANDOM UN-
DERSAMPLING approach that randomly explores the distri-
bution of majority instances and under-samples them. As for
the over-sampling, we will experiment with Synthetic Minority
Over-sampling Technique (SMOTE) and advanced versions
of this algorithm, i.e., Adaptive Synthetic Sampling Approach
(ADASYN) and the BORDERLINE-SMOTE. We will also
experiment with a RANDOM OVERSAMPLING approach that
randomly explores the distribution of the minority class and
over-samples them. Two main observations drive the selection
of these balancing techniques. On the one hand, they make
different assumptions on the underlying data distribution,

Fig. 2. Walk-forward validation process.

hence allowing us to experiment with multiple algorithms and
evaluate how the built prediction models react to them - the
insights coming from this analysis would benefit the research
community, which may learn more about how different data
balancing solutions affect IaC defect prediction models. On the
other hand, these techniques were also experimented with by
Dalla Palma et al. [14]: as explained earlier, this choice allows
us to compare our results with previous ones more fairly.

The training data will be normalized, scaling numeric
attributes. We plan to evaluate three configurations for data
normalization, namely (i) no normalization, (ii) min-max trans-
formation to scale each feature individually in the range [0,1],
and (iii) standardization of the features by removing the mean
and scaling to unit variance.

Finally, we plan to configure the hyper-parameters of the
selected machine learning classifiers by using the RANDOM
SEARCH algorithm [5], which randomly samples the hyper-
parameters space to find the best combination of hyper-
parameters maximizing a scoring metric (in our case, the
Matthews Correlation Coefficient). We plan to develop the
entire pipeline with the SCIKIT-LEARN library in PYTHON.

3) Validation of the Approach: To assess the performance
of our models, we will perform a within-project validation to
understand how accurate the performance can be when a defect
prediction model is trained using data from the same project
where it should apply. The model selection will be guided
by a randomized search of the models’ parameters through
a walk-forward validation [19]. In a walk-forward validation,
the dataset represents a time series that can be divided into
chronologically orderable parts, e.g., a project release. In each
run, all data available before the part to predict will be used as
the training set, while the part to predict will be used as the test
set, preventing the test set has data antecedent to the training
set. Afterward, the model performance will be computed as
the average of various runs. Figure 2 shows the validation
process. Specifically, the number of iterations will be equal to
the number of parts minus one. We will train each model on
the first n releases and test on the (n+1)-th release.

IV. EXECUTION PLAN

A. RQ1 - In Search of Suitable Program Dependency Graph
Metrics for Defect Prediction Models

To evaluate the relative predictive power of the metrics
described in Section III-C2, we will perform recursive feature
selection to find the metrics that maximize the performance
and rank them according to their importance for the prediction.
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TABLE I
METRICS LEVERAGING PROGRAM DEPENDENCE GRAPHS IN FUNCTIONAL PROGRAMMING CONTEXTUALIZED TO INFRASTRUCTURE AS CODE

Reference Original PDG Metric Description IaC-PDG Metric Description

[2], [34] sliceCount Number of slices a file contains.
sliceCount(x) = k, where k is the
number of slices in file x.

taskCount Number of tasks a playbook contains.
taskCount(x) = k, where k is the num-
ber of tasks in playbook x.

[2]

sliceSize Average number of lines of code (LOC)
in a module’s slices. sliceSize(x) =∑k

i=1 Si/k, where Si is the number of
LOC in slice i and k is the number of slices
in module x.

taskSize Average number of lines of code (LOC)
in a playbook’s tasks. taskSize(x) =∑k

i=1 Si/k, where Si is the number of
LOC in task i and k is the number of tasks
in playbook x.

sliceIdentifier Average number of distinct occurrences of
programmer-defined labels within a slice.
sliceIdentifier(x) =

∑k
i=1 SIi/k,

where SIi is the number of identifiers in
slice i, and k is the number of slices in
module x.

taskIdentifier Average number of distinct occurrences
of programmer-defined labels within a
task. taskIdentifier(x) =

∑k
i=1 SIi/k,

where SIi is the number of identifiers in
task i, and k is the number of tasks in
playbook x.

sliceSpatial Average spatial distance in LOC
between the definition and the last
use of the slice divided by the
module size. sliceSpatial(x) =∑k

i=1 sliceDistance(i)/k, where
k is the number of slices in x.
sliceDistance(i) = (Smi − Sni)/q,
where Smi is the line number of the first
statement in slice i, Sni is the line number
of the last statement in slice i, and q is the
module size in LOC.

taskSpatial Average spatial distance in LOC between
the definition and the last use of the task
divided by the file size. taskSpatial(x) =∑k

i=1 taskDistance(i)/k, where k is the
number of tasks in x. taskDistance(i) =
(Smi − Sni)/q, where Smi is the line
number of the first statement in task i, Sni

is the line number of the last statement in
task i, and q is the playbook size in LOC.

sliceCoverage Average ratio between the slice sizes and
the file’s LOC.

taskCoverage Average ration between the task’s sizes and
the playbook’s LOC.

[34]

verticesCount Number of vertices in a function’s PDG. verticesCount The number of vertices in a task’s PDG.
edgesCount Number of edges in a function’s PDG edgesCount Number of edges in a task’s PDG

edgesToVerticesRatio Ratio between the number of dependence
edges and the number of vertices PDG for
a given function’s PDG.

edgesToVerticesRatio Ratio between the number of dependence
edges and the number of vertices PDG for
a given task’s PDG.

sliceVerticesSum Sum of the vertices contained in each func-
tion’s slice.

pdgVerticesSum Sum of the vertices contained in each play-
book’s task

maxSliceVertices Number of vertices of the slice’s PDG with
the maximum number of vertices in all
function’s slices of a module.

maxPdgVertices Number of vertices of the task’s PDGs with
the maximum number of vertices in all
task’s PDGs of a playbook.

globalInput Number of parameters and non-local vari-
ables in a function.

globalInput The number of parameters and non-local
variables in a task.

globalOutput Number of non-local variables modified in
a function.

globalOutput Number of non-local variables modified in
a task.

directFanIn Sum of the number of slices in other mod-
ules that use the output variables directly
modified in a function.

directFanIn Sum of the number of tasks in other play-
books that use the output variables directly
modified in a task.

indirectFanIn Sum of the number of slices in other mod-
ules that use the output variables indirectly
modified in a function.

indirectFanIn Sum of the number of tasks in other play-
books that use the output variables indi-
rectly modified in a task.

directFanOut Sum of the number slices in other modules
whose output variables are directly modified
and used in a function.

directFanOut Sum of the number of tasks in other mod-
ules whose output variables are directly
modified and used in a task.

indirectFanOut Sum of the number slices in other modules
whose output variables are indirectly modi-
fied and used in a function.

indirectFanOut Sum of the number of tasks in other mod-
ules whose output variables are indirectly
modified and used in a task.

lackOfCohesion The number of shared vertices between
function’s slices.

lackOfCohesion The number of shared vertices between
playbook’s tasks.
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Given an external estimator that assigns weights to features,
recursive feature elimination (RFE) will select features by re-
cursively considering smaller and smaller sets of features that
optimize the performance criteria. Specifically, the algorithm
trains the estimator on the initial set of features and ranks
the features by importance. The least important features are
pruned from the current set. This procedure will be recursively
repeated on the pruned set until the algorithm selects the
desired number of features. Indeed, RFE requires selecting
the number of features to keep, which is often unknown in
advance. To find the optimal number of features, we will apply
cross-validation to score the different feature subsets and select
the best-scoring collection of features. To this end, we will
employ the RFECV method2 available in SCIKIT-LEARN.

B. RQ2 - In Search of the Best Defect Prediction Model based
on Program Dependency Graph Metrics

To assess the performance of our models, we will exper-
iment with multiple combinations, e.g., we will experiment
with how the performance varies when including (and exclud-
ing) the normalization or the data balancing steps.

To address RQ2, we will first compute metrics such as
precision, recall, F-Measure, Matthews Correlation Coefficient
(MCC), and the Area Under the Curve - Precision-Recall
(AUC-PR). In addition, to account for the imbalanced nature
of the dataset exploited, we will also compute micro and macro
averages of the metrics, i.e., variants of the evaluation metrics
that weight the performance achieved by a model according
to the distribution of the two classes, i.e., defective and non-
defective IaC scripts. Afterward, we will establish the best
model by comparing the MCC of the experimented models
through the Wilcoxon’s rank test [46], applying the post-
hoc Bonferroni’s correction [29] to deal with the multiple
comparisons that will be performed during the validation
process. In addition, we will also compute the Cohen’s δ effect
size measure [12] to assess the magnitude of the differences
observed. We will still compute and discuss the additional
evaluation criteria metrics, i.e., F-Measure, Precision, Recall,
and AUC-PR, to provide a more comprehensive overview
of the capabilities of the experimented models. For these
evaluation metrics, we will report statistics (i.e., mean, me-
dian, minimum, maximum, and standard deviation) about the
classifier achieving the best performance. However, we will
limit the statistical analysis to MCC as it is considered one of
the most valuable and unbiased metrics to compare prediction
models statistically [48].

C. RQ3 - Complementarity between the PDG metrics-based
model and the baseline model

Upon addressing RQ2 and assessing the performance of
the defect prediction model based on PDG metrics, we will
compare it with the existing baseline developed by Dalla
Palma et al. [14]. Specifically, we will run the baseline and
conduct a complementarity analysis to understand the overlap

2 Available at: https://scikit-learn.org/stable/modules/generated/sklearn.feature
selection.RFECV.html

with the PDG-based model. Given the two prediction models,
mi and mj , we will compute (1) the number of bugs correctly
predicted by both mi and mj , (2) the number of bugs correctly
predicted by mj and missed by mi, (3) the number of bugs
correctly predicted by mi only and missed by mj , and (4) the
number of bugs missed by both mi and mj . Such an analysis
could provide insights into the complementarity of the two
approaches, other than assessing the actual value of our model
compared to the baseline. The overlap metrics will indicate the
extent to which a combination of the model built in RQ2 and
the baseline [14] would have the potential to improve further
the performance of IaC defect prediction, i.e., the likelihood
that our working hypothesis may be accepted. We will finally
address our hypothesis through the next research question.

D. RQ4 - Comparing the performance to the existing baseline
and creating a “Hybrid” defect prediction model

Upon assessing the complementarity between the PDG
metrics-based and state-of-the-art metrics-based models, we
will build and assess the performance of a “hybrid” defect
prediction model that combines the metrics from the two
individual models. We will explore the relative prediction
power of the metric sets, i.e., Best-PDG from RQ2, and
ICO, Delta, and Process experimented by Dalla Palma et
al. [14]. The four metrics sets will be combined to construct
15 different models: “Best-PDG”, i.e., the best model coming
from RQ2, “ICO”, i.e., the best model coming from the work
by Dalla Palma et al. [14], “Delta”, “Process”, “Best-PDG +
ICO”, “Best-PDG + Delta”, “Best-PDG + Process”, “Delta
+ Process”, “Delta + ICO”, “Process + ICO”, “Best-PDG
+ ICO + Delta”, “Best-PDG + ICO + Process”, “Best-PDG
+ Delta + Process”, “ICO + Delta + Process”, “Total”. In
doing so, we will compare various combinations of metric
sets with respect to the individual models only relying on
PDG, structural, and process metrics, respectively. We will
compute RFE to score the different feature subsets and select
the best-scoring collection of features. Finally, we will employ
the same evaluation metrics as RQ2, i.e., precision, recall, F-
Measure, MCC, and AUC-PR.

E. Addressing Our Working Hypothesis

To finally address our working hypothesis, we first define a
formal null hypothesis, namely:

Hn1. There is no statistically significant difference be-
tween the MCC achieved by any of the models relying
on PDG metrics and the those defined by Dalla Palma
et al. [14].

According to the null hypothesis, should any of the models
featuring PDG metrics obtain performance not statistically
better than the state-of-the-art model, then we would have
failed to demonstrate that PDG metrics may improve IaC
defect prediction. On the contrary, we would accept the
alternative hypothesis, which is:

6
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An1. The MCC achieved by any of the models relying on
PDG metrics is statistically better than the those defined
by Dalla Palma et al. [14].

To address the hypothesis, we will compute the ρ-value
from a matched pair Wilcoxon’s rank test [46] for all pairs of
techniques, applying a post-hoc Bonferroni’s correction [29]
to deal with the multiple comparisons. Should the ρ-value
be lower than 0.05, we will reject the null hypothesis and
accept the alternative ones, i.e., the PDG metrics improve
the performance of IaC defect prediction models. Otherwise,
we will accept the null hypothesis. In addition, we will also
compute the Cohen’s δ effect size measure [12] to assess the
magnitude of the differences observed.

F. Publication of Generated Data

All the data generated from our study will be publicly
available in an online repository on FIGSHARE. We also plan
to release the scripts next to the data collected and used for
the statistical analysis we will present in the paper.

V. LIMITATIONS

This section discusses the potential threats that may affect
the validity of our empirical study plan [47].

Threats to construct validity. The first possible threat
concerns the projects we will analyze in our study. We will rely
on publicly available resources built in the context of previous
research [14] that have already been used and validated,
making us confident of the reliability of the selected projects.
Another threat concerns how we will collect the set of PDG
metrics. We plan to use the PDG builder that has already
been used and validated [31], [32]. We will attempt to perform
manual investigations on a statistically significant sample of
PDG slices to assess the degree of accuracy of the extracted
metrics (Section III-C2)—in this way, we will be able to
provide indications of the confidence level of our conclusions.

Threats to internal validity. Threats to internal validity
concern internal factors we might not consider that could affect
the investigated variables. In particular, the choice of metrics
might positively or negatively influence the classification. We
will mitigate this threat by considering a comprehensive set of
PDG metrics gathered from the literature [2], [34]. Similarly,
data balancing is a critical aspect of defect prediction, so we
plan to evaluate several over- and under-sampling techniques
and how they could affect the model’s performance.

Threats to external validity. Threats to external validity
concern the generalization of results. First, we will analyze
135 Ansible-based systems from different application domains
and with different characteristics (e.g., number of contributors,
size, number of commits, etc.). Second, our proposal revolves
around within-project defect prediction, so we will learn
features that characterize failure-prone IaC scripts from the
individual projects considered. Projects with a small number
of defective instances will be discarded in this context: indeed,
the absence of defects would not allow any machine learner

to distinguish failure-prone from failure-free scripts. Finally,
another threat is related to the classifier selection. We will
evaluate five classifiers widely used in previous studies on bug
prediction (e.g., [7], [14], [15]).

Threats to conclusion validity. Concerning the relationship
between treatment and outcome, we will exploit a set of
widely-used metrics to evaluate the performance of defect
prediction techniques (i.e., precision, recall, F-measure, MCC,
AUC-PR) [14], [40], [41]. In addition, we will use appropriate
statistical tests, i.e., the Wilcoxon Test and the Cliff’s Delta,
which will allow us to support our findings and address our
hypothesis. When assessing the contribution of the features to
use in our approach, we will rely on the Recursive Feature
Elimination algorithm [10], which the research community
has used for the same purpose [1], [14]. Furthermore, since
we will exploit change-history information to compute the
PDG metrics, our study’s evaluation design differs from the
k-fold cross-validation generally exploited while evaluating
defect prediction techniques. In particular, we will use the
whole history of a system for the evaluation by adopting a
walk-forward validation and assuring that new data (i.e., new
releases) used to evaluate the model were never antecedent to
those used to train it.

Another potential limitation concerns the intrinsic lifecycle
of IaC defects: they must be reported and fixed before their
introducing change is known. Our research will leverage the
SZZ algorithm and commit messages indicating defect-fixing
activities to mine defect data. As such, we acknowledge
that undocumented defects, i.e., defects not reported in the
issue tracker, could lead to classifying failure-prone scripts as
“neutral” mistakenly.

VI. RELATED WORK

In the last few years, IaC has received increasing attention in
the research community due to the paradigm shift in software
design and development. Various works have investigated the
literature, exploring the adoption, challenges, and defects of
IaC [11], [21], [24], [35], [37]. Jiang and Adams [23] investi-
gated the co-evolution between infrastructure and production
code, finding that the infrastructure code is coupled with test
files, leading testers to change infrastructure specifications
often during continuous improvement. Analyzing the literature
on smelliness in IaC, we found a plethora of studies. Sharma
et al. [43] looked for code smells in the source code of
configuration management tools, proposing a catalog of eleven
design configuration smells. Opdebeeck et al. [31] proposed
six code smells related to Ansible variable precedence rules
and lazy-evaluated template expressions. Rahman et al. [38]
proposed a catalog of seven security smells in IaC, extracted
from Puppet script in open-source repositories. Later, Rahman
et al. [39] proposed SLAC, a tool that checks for security
smells in Ansible. Opdebeeck et al. [32] proposed GASEL, a
security smell detector that recognizes seven security smells in
Ansible scripts. Other studies related to Ansible concern the
use of deep learning to detect anti-patterns and inconsistencies
in the naming of tasks [6], and the application of change
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distilling to study and predict version increments in open-
source Ansible roles [33].

Moving on to defect prediction studies in IaC, Van der
Bent et al. [44] defined a model to assess the quality of
Puppet code. Dalla Palma et al. [14] proposed a framework
to help practitioners to predict failure-prone in Ansible scripts
focusing on several structural and process metrics [13] and
reaching performance around 70%. Finally, Rahman et al. [40],
[41] used text and source code properties to construct defect
prediction models reaching performance around 70%.

Our registered report can be seen as complementary to the
work mentioned above, as it aims at studying the impact of
the program dependence graph characteristics when predicting
the failure-proneness of IaC scripts. Moreover, we will focus
on Ansible projects instead of Puppet.

VII. CONCLUSION

The ultimate goal of our research is to assess whether a IaC
defect prediction model relying on PDG metrics can improve
on a state-of-the-art defect predictor based on structural and
process metrics. We will start working toward this goal by
computing the PDG metrics on a set of 137 Ansible projects.
Then we will employ a defect prediction model to address the
goals of our investigation and, based on the conclusions we
will be able to draw and finally provide actionable items and
implications for researchers and practitioners.
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