
1 CONTEXT OF THE RESEARCH

Gerardo Iuliano — Ph.D. Proposal - XL Cycle

Toward Secure-by-design Smart Contract Development

1 Context of the Research

In recent years, blockchain technology has garnered significant attention as a life-changing innovation poised to

redefine traditional systems across various industries. This revolutionary technology offers decentralized and secure

solutions that enhance transparency and efficiency in transactional processes.

Blockchain and Smart Contracts. A blockchain is an immutable, secure digital ledger shared among multiple

nodes, ensuring transparency and data integrity without reliance on a central authority. This decentralized architec-

ture enhances trust and security by preventing single points of failure or control. Smart contracts are self-executing

programs hosted on blockchains designed to automate the execution of predefined contractual agreements. Once

conditions are met, the terms are automatically enforced, eliminating intermediaries and reducing transaction costs

and processing times. This automation ensures agreements are executed reliably and efficiently, enhancing trust

between parties.

Applications and Benefits. Smart contracts offer a robust framework for secure, transparent digital transactions

across finance, supply chain, healthcare, and more industries. They facilitate innovation and growth by streamlining

operations, reducing costs, and opening new avenues for financial products like decentralized finance (DeFi) and

non-fungible tokens (NFTs). Their adoption by enterprises enhances supply chain transparency, data integrity,

and identity verification, thereby increasing overall investment value. Cryptocurrencies and blockchain applications

further democratize access to global financial services, promoting inclusivity and economic empowerment.

Challenges and Security Concerns of Smart Contracts. Despite their many advantages, smart contracts

face significant challenges, especially concerning security. There is a lack of established best practices to system-

atically guide the development of smart contracts with security as a core design principle, making smart contracts

vulnerable to weaknesses, coding errors, and vulnerabilities, which can be exploited to cause substantial financial

losses and other serious consequences. Existing vulnerability taxonomies that categorize smart contract vulnera-

bilities are often incomplete or inadequate, eventually confusing developers and hindering effective communication

about security risks. Detection tools designed to identify vulnerabilities in smart contracts also pose challenges.

Many of these tools suffer from high rates of false positives, wasting developers’ time and resources investigating

false alarms rather than focusing on genuine security threats. Another significant issue is the need for more precise

and comprehensive guidelines for secure smart contract development, leading developers to introduce vulnerabili-

ties due to oversight or lack of awareness inadvertently. Finally, integrated development environments often do not

adequately support developers in addressing security concerns, exacerbating the risks associated with human errors

and malicious attacks, as developers may struggle to implement robust security measures effectively.

◎ Proposal Main Objective

This research aims to establish a security-by-design approach for smart contract development aimed at en-

hancing security and code quality from the initial stages of implementation. My objective includes integrating

advanced vulnerability detection tools into the development pipeline of the AstraKode Blockchain (AKB) plat-

form. This initiative seeks to minimize the vulnerabilities associated with smart contracts and facilitate the

development of more resilient and secure decentralized applications (DApps).

1



2 STATE OF THE ART: VULNERABILITIES, TOOLS, AND BENCHMARKS

2 State of The Art: Vulnerabilities, Tools, and Benchmarks

Vulnerabilities in smart contracts can lead to severe financial losses. Despite extensive research documenting such

vulnerabilities, existing solutions often fail to fully address the complexities and risks inherent in smart contract

development. The current state of blockchain security underscores the need for improved methods to enhance the

robustness and security of decentralized applications, ensuring they are safe and reliable for broader adoption.

Vulnerability Classification. The white literature highlights the need for a comprehensive taxonomy to address

the related security risks. Luu et al. (2016) [1] describe various Ethereum smart contract vulnerabilities without

additional categorization. They define these vulnerabilities, provide code snippets and examples of attacks, and

discuss affected real-world smart contracts. They propose enhancements to Ethereum’s operational semantics to

address some of these issues. Atzei et al. (2017) [2] classify smart contract vulnerabilities based on their occurrence:

in the source code (typically Solidity), at the machine level (bytecode or instruction semantics), or at the blockchain

level. This taxonomy includes mappings to real examples of attacks and vulnerable smart contracts. Nevertheless,

some inconsistencies exist in classifying specific vulnerabilities. For instance, the “unpredictable state” vulnerability

is illustrated with an example commonly seen as transaction order dependency in other works. Problems associated

with dynamic libraries are also classified under the same type, although these issues stem from inherently different

causes. Dika (2017) [3] extends Atzei et al.’s taxonomy by incorporating additional vulnerabilities and evaluating

their criticality levels, providing a more comprehensive overview of potential security issues in smart contracts. The

gray literature instead offers the Decentralized Application Security Project Top 10 (DASP Top 101) and Smart

Contract Weakness Classification Registry (SWC Registry2). The DASP Top 10, initiated by NCC Group in 2018,

identifies ten categories of smart contract vulnerabilities without defining them or explaining their selection and

ranking criteria. Several studies, e.g., Durieux et al. (2020) [4], leverage such categories but highlight that they are

insufficient. The SWC Registry links smart contract vulnerabilities to the Common Weakness Enumeration (CWE)

typology by MITRE Corp (2006) [5] and compiles test cases. Currently, the registry includes 36 vulnerabilities,

providing descriptions, references, remediation suggestions, and sample Solidity contracts.

Tools and Benchmarks to Identify Vulnerabilities. Although several state-of-the-art tools for vulnerability

detection in smart contracts exist, they need to be improved, particularly regarding the datasets used for training

and evaluation. These datasets often focus only on the most common vulnerabilities, neglecting equally critical but

less investigated issues. Additionally, the automatic labeling process prevalent in these datasets results in a high

incidence of false positives, which can confuse developers and lead to inefficient resource allocation, compromising the

effectiveness of security assessments. The inadequate documentation of vulnerability patterns further complicates

identifying and mitigating security flaws. Notable tools using these benchmarks include DeeSCVHunter [6], which

employs a systematic Deep Learning-based framework to detect smart contract vulnerabilities automatically by

identifying complex patterns and anomalies. The Ethereum Security Analysis Framework [7] (ESAF) offers a

comprehensive solution for analyzing smart contract vulnerabilities, capable of persistent security monitoring and

classic vulnerability analysis. SMARTIAN [8] is an efficient open-source fuzzer that excels at uncovering bugs in real-

world smart contracts without requiring access to the source code, being particularly useful for developers addressing

vulnerabilities in deployed contracts. ESCORT [9], the first Deep Neural Network-based vulnerability detection

framework for Ethereum smart contracts, supports lightweight transfer learning on unseen security vulnerabilities.

It leverages neural networks to detect vulnerabilities that traditional analysis methods might miss. Even with these

advancements, the effectiveness of these tools is limited by the current benchmarks and insufficient documentation

of vulnerability patterns. Therefore, it is crucial to enhance benchmark diversity and accuracy, incorporate less

common vulnerabilities, implement stricter manual validation, and improve the documentation of vulnerability

patterns. Finally, none of the proposed solutions aim to create a comprehensive framework for developing secure

smart contracts by design.

1DASP Top 10: https://dasp.co/
2SWC Registry: https://swcregistry.io/

2

https://dasp.co/
https://swcregistry.io/


3 METHOD

Automated Repair of Smart Contracts. The literature provides several tools to suggest fixing vulnerabilities

once identified or even generating a patch. EVMPATCH [10] instantly and automatically patches faulty smart

contracts using a bytecode rewriting engine tailored for Ethereum. It converts standard contracts into upgradable

ones, focusing on strengthening contracts vulnerable to issues like integer overflows/underflows and access control

errors. SGUARD [11] automates smart contract vulnerability detection and fixing with minimal runtime impact.

It employs symbolic execution and static analysis to pinpoint vulnerabilities and applies specialized patterns to fix

them. Elysium [12] provides a scalable approach to repair smart contracts at the bytecode level automatically. It

combines template-based and semantic-based patching by inferring contextual information from the bytecode. It

can automatically fix seven types of vulnerabilities, although it is designed for easy extension with new templates

and bug-finding tools. SCRepair [13] introduces a gas-aware automated approach to repairing smart contracts. Its

search-based method explores various mutations of faulty contracts, considering gas usage through the novel gas

dominance relationship. Most of these tools focus on post-deployment scenarios rather than supporting developers

during code development, reflecting the prevalent challenge of bytecode-focused operations due to limited access

to smart contract source code. Reviewing code during the implementation phases could be highly advantageous

because it would allow developers to identify and eliminate vulnerabilities at the source code level, ensuring enhanced

security and reliability of smart contracts before deployment.

3 Method

The proposed research aims to implement a security-by-design approach for smart contract development, enhancing

security and code quality from the initial stages of implementation. My goal is to integrate advanced vulnerability

detection tools and a patch suggestion system directly into the development pipeline of the AstraKode Blockchain

(AKB) platform. To achieve this goal, the main goal will be broken down into the following Research Goals (RG):

3.1 RG1: Systematic Literature Review

Challenge: Current taxonomies are not up-to-date, and no established classification has become a standard. There

are numerous tools for detecting vulnerabilities, but it is unclear which implementation is optimal for each vulner-

ability. Additionally, limited information is available on the benchmarks used for their evaluation.

Objective: Categorize vulnerabilities based on common characteristics and attributes. Develop a structured tax-

onomy to classify various types of vulnerabilities systematically. Compile a comprehensive list of tools to detect

vulnerabilities and analyze the methods and techniques they utilize. Establish mappings between these tools and

vulnerabilities and compile a list of benchmarks utilized in the literature to evaluate their effectiveness.

Method: I will follow standard guidelines for conducting a Systematic Literature Review (SLR) such as those by

Kitchenham and Charters [14].

3.2 RG2: Tools Infrastructure

Challenge: Tools are validated in disparate environments using different benchmarks, making it challenging to

compare them effectively to determine the most suitable for specific needs. No standardized infrastructure allows

for evaluating tools under consistent conditions.

Objective: Develop an infrastructure enabling parallel execution of tools in a uniform environment leveraging a

standardized benchmark for all tools.

Method: I will combine containerization, e.g., Docker3 and orchestration, e.g., Kubernetes4, to developer a

container-based platform to execute multiple tools simultaneously.

3Docker is an open platform for developing, shipping, and running applications.
4Kubernetes is a portable, extensible, open-source platform for managing containerized workloads and services.

3



3.3 RG3: Fix Suggestion with LLM 3 METHOD

3.3 RG3: Fix Suggestion with LLM

Challenge: Existing tools are not developed to provide support during development and suggest patches. Large

Language Models (LLM) are capable of generating vulnerability-free code versions. However, LLM alone cannot

effectively identify vulnerabilities due to the broad spectrum of potential issues.

Objective: Use the infrastructure developed in RG2 to identify vulnerabilities, which will be repaired by LLM by

providing in input the smart contract and information concerning the vulnerability.

Method: I will leverage the infrastructure developed in RG2 to detect vulnerabilities in smart contracts. Subse-

quently, I will employ an LLM like GPT5 to generate vulnerability-free smart contracts.

3.4 RG4: Pipeline Integration

Challenge: AKB features a no-code development approach in its pipeline. Like many other companies, it relies

on professionals to verify the correctness of smart contracts. However, auditing is often expensive and error-prone.

Objective: Integrate a chatbot into AKB’s pipeline. The chatbot should identify vulnerabilities in the early stages

of smart contract development and provide a vulnerability-free version of the contract.

Method: I will integrate the outcomes from RG3 into a chatbot that will be incorporated into AKB’s pipeline.

By achieving these research goals, I aim to create a robust, secure, and efficient smart contract development

environment that ensures high code quality and minimizes security risks. The research schedule is shown in Fig. 1.

I will spend 10 months on each of the first 3 RGs and 6 months on the fourth RG.

Figure 1: Research Goals Schedule

3.5 Cross-cutting Goals

Alongside the primary objectives, the cross-cutting goals of publishing results, promoting open science, and facili-

tating technology transfer enhance the research’s impact and reach.

Publication of Results. The proposed research encompasses the realms of Software Engineering, Security, and

Artificial Intelligence. The attained results will be published in relevant general-purpose venues and venues about

the specific themes of the proposal. The targeted venues will be, but not limited to, IEEE Transactions on Software

Engineering (TSE), ACM Transactions on Software Engineering and Methodology (TOSEM), Empirical Software

Engineering (EMSE), Journal of Systems and Software (JSS), the International Conference on Software Engineer-

ing (ICSE), the ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA), the IEEE

International Conference on Software Testing (ICST). Their rankings are listed respectively by Scimago Journal

Rank, with values ranging from Q1 to Q2, and Core Ranking, with values ranging from A to A*.

Open Science and Technology Transfer. The proposed research will adhere to Open Science, making all

findings freely available to enhance accessibility, transparency, and efficiency in scientific research. The research

will also adopt the Technology Transfer methodology to make technology accessible to the market, ensuring that

discoveries benefit a wider audience.

5GPT is a type of artificial intelligence model developed by OpenAI.

4



REFERENCES

4 Expected Impact

The research impact of the proposed solutions could be substantial and multifaceted.

Boosting Blockchain Trust through Smart Contract Security. The proposed research will increase stake-

holders’ confidence in adopting DApps. As smart contract security improves, more industries may adopt blockchain

technology, accelerating innovation and integration across finance, supply chain, and healthcare sectors. Enhanced

security will also boost trust among end users and regulators, which is crucial for mainstream blockchain adoption.

AKB will be able to promote a trustworthy blockchain ecosystem by ensuring secure smart contracts, encouraging

broader industry implementation, and leading to a robust technology framework.

Reduction in Financial Losses. Smart contracts often manage significant financial transactions. This research

could help prevent substantial financial losses due to hacking or other security breaches by minimizing vulnerabilities

and potential exploits, benefiting both individual users and organizations.

Enhanced Development Practices and Standardization. Establishing a security-by-design approach will

provide developers with a structured methodology that promotes best practices in smart contract development

and elevates the overall code quality, making the development process more efficient and less error-prone. The

methodology could also be standardized to increase the adoption of such practices across the industry, fostering a

more cohesive and secure blockchain ecosystem. AKB could streamline development practices, reduce vulnerabilities,

and contribute to a higher security standard in blockchain applications.

Educational Impact. The research findings could be used to educate developers, helping them understand the

importance of security in smart contract development. Based on the research, training programs and educational

materials could be developed, contributing to a more knowledgeable and skilled developer community.

Overall, this research has the potential to create a more secure, reliable, and widely accepted blockchain ecosystem,

fostering innovation and trust in decentralized applications. By establishing a robust security-by-design approach

for smart contract development, the project aims to revolutionize blockchain technology. Enhanced security and

reliability through advanced vulnerability detection and formal verification techniques will build greater trust and

transparency among users and regulators. Integrating these improvements into the AKB platform will set new

industry standards, paving the way for secure, efficient, and widely adopted blockchain applications.

References

[1] Loi Luu et al. Making Smart Contracts Smarter. Cryptology ePrint Archive, Paper 2016/633. 2016.

[2] Nicola Atzei et al. “A Survey of Attacks on Ethereum Smart Contracts (SoK)”. In: 2017.

[3] Ardit Dika. “Ethereum Smart Contracts: Security Vulnerabilities and Security Tools”. In: 2017.

[4] Thomas Durieux et al. “Empirical review of automated analysis tools on 47,587 Ethereum smart contracts”. In: ICSE ’20.

[5] MITRE Corp. Common Weakness Enumeration (CWE): A Community-Developed List of Software Weakness Types. 2006.

[6] Xingxin Yu et al. “DeeSCVHunter: A Deep Learning-Based Framework for Smart Contract Vulnerability Detection”. In: 2021.

[7] Antonio López Vivar et al. “A security framework for Ethereum smart contracts”. In: Computer Communications (2021).

[8] Jaeseung Choi et al. “SMARTIAN: Enhancing Smart Contract Fuzzing with Static and Dynamic Data-Flow Analyses”. In: 2021.

[9] Oliver Lutz et al. ESCORT: Ethereum Smart COntRacTs Vulnerability Detection using Deep Neural Network and Transfer

Learning. 2021. arXiv: 2103.12607 [cs.CR].

[10] Michael Rodler et al. “EVMPatch: Timely and Automated Patching of Ethereum Smart Contracts”. In: Aug. 2021.

[11] Tai D. Nguyen et al. “SGUARD: Towards Fixing Vulnerable Smart Contracts Automatically”. In: 2021.

[12] Christof F. Torres et al. “Elysium: Context-Aware Bytecode-Level Patching to Automatically Heal Vulnerable Smart Contracts”.

In: RAID ’22. New York, NY, USA: Association for Computing Machinery.

[13] Xiao Liang Yu et al. “Smart Contract Repair”. In: ACM Trans. Softw. Eng. Methodol. (2020). issn: 1049-331X.

[14] Barbara Kitchenham and Stuart Charters. “Guidelines for performing Systematic Literature Reviews in Software Engineering”.

In: 2 (Jan. 2007).

5

https://arxiv.org/abs/2103.12607

	Context of the Research
	State of The Art: Vulnerabilities, Tools, and Benchmarks
	Method
	RG1: Systematic Literature Review
	RG2: Tools Infrastructure
	RG3: Fix Suggestion with LLM
	RG4: Pipeline Integration
	Cross-cutting Goals

	Expected Impact
	References

