
UNIVERSITÀ DEGLI STUDI DI SALERNO

Dipartimento di Informatica

Corso di Laurea Magistrale in Informatica

TESI DI LAUREA

Infrastructure-as-Code Defect
Prediction Using Program Dependence

Graph Metrics

RELATORE

Prof. Dario Di Nucci
Dott.ssa Valeria Pontillo
Università degli Studi di Salerno

CANDIDATO

Gerardo Iuliano
Matricola: 0522501329

Anno Accademico 2022-2023

Questa tesi è stata realizzata nel

Dedicated to all those who have embraced the world of computing with curiosity and passion,

relentlessly seeking innovative solutions. May this thesis be a modest contribution to the vast

landscape of computer science knowledge, inspiring new challenges and discoveries.

Abstract

Context: Infrastructure-as-code (IaC) is a DevOps practice that facilitates the manage-

ment and provisioning of infrastructure by utilizing machine-readable files known

as IaC scripts. Similarly to other types of source code artifacts, these scripts are sus-

ceptible to defects that may hinder their functionality.

Objective: We conjecture that Program Dependence Graph (PDG) metrics may pro-

vide insights into the defectiveness of IaC scripts and, based on such a conjecture, we

propose to develop and empirically evaluate a new defect prediction model based on

PDG metrics.

Method: We extracted 11 PDG metrics from 139 open-source Ansible projects and

train five machine learners to assess their capabilities in a within-project scenario,

other than comparing them with a state-of-the-art defect predictor relying on struc-

tural and process IaC-oriented metrics. Finally, we assessed the performance of a

combined model that mixes together PDG and existing IaC-oriented metrics.

Results: The most occurring predictors are MAXPDGVERTICES, EDGESTOVERTICES-

RATIO, EDGESCOUNT, and VERTICESCOUNT. Program Dependence Graph metrics-

based models trained using RANDOM FOREST and DECISION TREE perform sta-

tistically better than those relying on the remaining classifiers. PDG metrics-based

models correctly predicted the number of bugs over 20% more than Delta and Pro-

cess metrics-based models. Finally, PDG metrics can improve the performance of

Delta and Process metrics. However, such metrics have negligible effects on models

employing ICO metrics.

Contents

List of Figures iii

List of Tables iv

1 Introduction 1

1.1 Application Context . 1

1.2 Motivations and Objectives . 2

1.3 Results Obtained . 2

1.4 Structure of Thesis . 3

2 Background 5

2.1 DevOps and Infrastructure-as-Code 5

2.2 Machine Learning and Defect Prediction 7

2.3 Program Dependence Graph . 9

3 Program-Dependence-Graph-based Metrics for Ansible 11

3.1 Task-level Program Dependence Graphs for Ansible 11

3.2 PDG-based Metrics for Ansible . 17

4 Research Methodology 21

4.1 Research Questions . 21

4.2 Context Selection . 22

i

Contents

4.3 Empirical Study Variables . 23

4.4 Machine Learning for Defect Prediction 24

4.5 RQ1 - In Search of Suitable Program Dependency Graph Metrics for

Defect Prediction Models . 27

4.6 RQ2 - In Search of the Best Defect Prediction Model based on Program

Dependency Graph Metrics . 27

4.7 RQ3 - Complementarity between the PDG Metrics-based Model and

the Baselines . 28

4.8 RQ4 - On the Performance of the Baselines and a Novel “Hybrid" Model 29

5 Data analysis and results 30

5.1 Metrics Extraction . 30

5.2 RQ1 - In Search of Suitable Program Dependency Graph Metrics for

Defect Prediction Models . 31

5.3 RQ2 - In Search of the Best Defect Prediction Model based on Program

Dependence Graph Metrics . 32

5.4 RQ3 - Complementarity between the PDG Metrics-based Model and

the Baselines . 34

5.5 RQ4 - On the Performance of the Baselines and a Novel “Hybrid" Model 35

6 Discussion, Limitations, and Implications 37

7 Threats to Validity 39

8 Conclusion 42

Bibliography 44

Appendix 49

ii

List of Figures

3.1 Program dependence graph for the example of Listing 3.2. 16

4.1 Walk-forward validation process. 26

5.1 Matthews Correlation Coefficient of each Learning Technique 33

5.2 Nemenyi’s Classifiers Diagram . 33

5.3 Matthews Correlation Coefficient of each Set of Metrics 35

5.4 Nemenyi post-hoc Critical Distance Diagram 36

iii

List of Tables

3.1 Metrics leveraging Program Dependence Graphs in functional pro-

gramming contextualized to Infrastructure as Code 18

4.1 GitHub repositories criteria . 23

4.2 Metrics description . 23

5.1 Features importance and rank . 31

5.2 Number of Times a Model Appears Among the Best-Performing Models 33

5.3 Complementarity between the PDG metrics-based model and the

baseline model . 35

1 Statistical Comparison of Mean MCC Among Learning Techniques.

Values below the diagonal are the differences between pairs of tech-

niques. A negative value means that the model in the row performed

worse than the one in the column. Values above the diagonal are the

effect size. 49

2 Nemenyi post-hoc test. In the context of a Nemenyi test, a p-value

of 0.90 or 0.83 in a pairwise comparison indicates that there is no

statistically significant difference between the groups being compared. 49

3 MCC of each Defect Prediction Model based on PDG Metrics per Project 50

4 Performance Statistics of Random Forest Across the 80 Repositories . 52

iv

List of Tables

5 Performance Statistics of Decision Tree Across the 80 Repositories . . 53

6 Nemenyi pairwise comparisons test between set of metrics. Com-

parisons of Delta with Delta+PDG, Process with Process+PDG, and

Delta+Process with Delta+Process+PDG metrics show a statistically

significant difference in performance. Sets of metrics that additionally

contain PDG metrics perform better than sets that do not contain PDG

metrics. On the other hand, sets of metrics that contain ICO metrics,

e.g., ICO, ICO+Delta, ICO+Process, and ICO+Delta+Process, have

performances that are not statistically different from their respective

sets with PDG metrics added. 53

v

CHAPTER 1

Introduction

1.1 Application Context

DevOps [1] enables the automation of the software lifecycle at both development

and operation levels. In this context, Infrastructure as Code (IaC) has emerged as

the practice of automating the process of deploying and maintaining infrastructure

through executable source code scripts [2]. Configuration management tools, e.g.,

Ansible [3], Chef [4], and Puppet [5], enable practitioners to employ IaC scripts for

configuring the machines in their infrastructure programmatically. For instance, they

can install software dependencies and manage configuration files. The adoption

of these tools has been increasing rapidly [6], with Ansible emerging as one of the

most popular solutions [7]. Nonetheless, Infrastructure as Code remains source code

that may exhibit the same flaws as application code, e.g., code smells [8, 9, 10, 11],

defects [12, 13, 14, 15], or security concerns [16]. These issues may notably impact

the reliability and maintainability of infrastructure code and have several negative

implications, e.g., hot service stand-by [17] or costly elastic provisioning [18].

More specifically, defect prediction [19] relies on machine learning algorithms to

identify the portions of source code more likely to exhibit defects, allowing developers

to take appropriate mitigation plans, e.g., test case prioritization. When considered

1

1.2 − Motivations and Objectives

in the context of IaC, the effective prediction of defect-prone IaC scripts may help

organizations embrace DevOps principles to focus on the most critical scripts during

quality assurance activities and find a better way to allocate effort and resources.

The current state of the art in IaC defect prediction is represented by the work by

Dalla Palma et al. [20], who proposed the so-called RADON framework: this is a

machine learning-based framework that supports the prediction of defect-prone

Ansible scripts through the use of a mixture of product and process metrics, e.g.,

lines of code or average task size of an Ansible script.

1.2 Motivations and Objectives

While the empirical study conducted on RADON showed that it may predict

defect-prone scripts with high accuracy, Dalla Palma et al. [20] also pointed out that

further metrics able to characterize orthogonal properties of Ansible scripts may

further improve defect prediction capabilities. A Program Dependence Graph (PDG)

representation captures both the control and data flow of Ansible scripts, providing

an improved mechanism to analyze the inner workings of those scripts.

This thesis overviews our research method to address our hypothesis: we propose

a confirmatory empirical investigation where we (1) collected a new set of 17 metrics

based on the program dependence graph of Ansible scripts—the definition of these

metrics comes from the adaptation of concepts and metrics proposed by previous

research; (2) devised a new defect prediction model based on the newly defined

metrics; and (3) evaluated the performance of the model, assessing the contribution

of the metrics both in isolation and when combined with the metrics employed

by Dalla Palma et al. [20]. We finally assessed statistically whether PDG metrics

contribute to the prediction of defective IaC scripts.

1.3 Results Obtained

We conducted several experiments, achieving the following results. The PDG met-

rics that maximize the performance of defect prediction models are maxPDGVertices,

verticesCount, edgesToVerticesRatio and edgesCount with a mean rank value of 2.21, 2.92,

2

1.4 − Structure of Thesis

3.65 and 3.88 respectively. The Program Dependence Graph metrics-based models

trained using Random Forest and Decision Tree perform statistically better than those

relying on the remaining classifiers. Program Dependence Graph metrics improve

the number of bugs correctly predicted by 23.8% over Delta metrics alone, 21.13%

over Process metrics alone, and 1.6% over ICO metrics alone. Finally, PDG metrics

can improve the performance of Delta and Process metrics. However, such metrics

have negligible effects on models employing ICO metrics.

1.4 Structure of Thesis

The structure of the thesis is organized into seven chapters, each serving a specific

purpose and contributing to the overall understanding of the research conducted.

Here’s a brief explanation of each chapter:

This chapter provides an overview of the context in which the research is con-

ducted. It outlines the reasons and goals behind the research and discusses any

preliminary results or findings.

Chapter 2 discusses the background and concepts related to DevOps and Infrastruc-

ture as Code. It also provides information about machine learning and its application

in defect prediction and introduces the concept of Program Dependence Graph as a key

element in the research.

Chapter 3 suggests the application of concepts and tools related to program

dependency graphs to evaluate and improve Ansible configurations in terms of

quality and performance.

Chapter 4 lists the research questions addressed in the study. In addition, it

explains how the research context was selected, details the variables used in the

empirical study, and discusses the use of machine learning in defect prediction.

Finally, it outlines the research questions to be tested.

Chapter 5 presents the results and analysis for each of the research questions and

discusses how the results relate to the working hypothesis.

Chapter 6 combines critical analysis of the research findings, a recognition of the

study’s limitations, and a discussion of the broader implications and significance of

the research in its respective field.

3

1.4 − Structure of Thesis

Chapter 7 addresses various threats to the validity of the research, including

construct validity, internal validity, external validity, and conclusion validity.

Finally, Chapter 8 summarizes the main findings and concludes the thesis.

4

CHAPTER 2

Background

2.1 DevOps and Infrastructure-as-Code

The DevOps methodology is drastically changing the way software is designed

and managed. DevOps involves in adoption of a set of organizational and technical

practices, e.g., continuous integration, continuous deployment, blending develop-

ment, and operation teams, in order to thrive and remain competitive in the modern

digital ecosystem and market, which demands fast and early releases, continuous

software updates, constant evolution of market needs, and adoption of scalable

technologies such as Cloud computing. Infrastructure-as-Code (IaC) is a DevOps

practice that involves using machine-readable code to describe complex, often Cloud-

based deployments. Cloud computing has been the primary driving force behind

Infrastructure-as-Code (IaC), as it has made the programmatic provisioning, configu-

ration, and management of computational resources a widely adopted practice. Many

languages and platforms have been developed, each dealing with specific aspects

of infrastructure management, from tools able to provision and orchestrate virtual

machines (Terraform, Cloudify), to those doing a similar job for container technolo-

gies (Kubernetes, Docker Swarm), to machine image management tools (Packer), to

configuration management tools (Chef, Puppet, Ansible). In recent years, Ansible has

5

2.1 − DevOps and Infrastructure-as-Code

gained popularity as a simple and agent-less (i.e., no master node) alternative to other

more complex IaC technologies such as Chef and Puppet. Ansible is an automation

engine that uses the YAML language to automate a variety of tasks, including cloud

provisioning, configuration management, and application deployment. It operates by

connecting to nodes and deploying Ansible modules, which are scripts that describe or

modify the state of the system. Ansible executes these modules on an as-needed basis.

While Ansible modules ensure the proper functionality of Ansible scripts, playbooks

are critical for orchestrating multiple components of the infrastructure topology with

precise control over scalability (i.e., how many machines to handle at a time). Play-

books are essential for configuration management and multi-machine deployment in

Ansible, as they can declare configurations and coordinate the steps of any manual,

ordered process by executing tasks within one or more plays. Each play maps hosts to

specific roles, represented by Ansible tasks that collectively invoke Ansible modules.

1 ---

2 - name: Update web servers

3 hosts: webservers

4 remote_user: root

5

6 tasks:

7 - name: Ensure apache is at the latest version

8 ansible.builtin.yum;

9 name: httpd

10 state: latest

11 - name: Write the apache config file

12 ansible.builtin.template:

13 src: /srv/httpd.j2

14 dest: /etc/httpd.conf

15

16 - name: Update db servers

17 hosts: databases

18 remote_user: root

19

20 tasks:

21 - name: Ensure postgresql is at the latest version

22 ansible.builtin.yum;

6

2.2 − Machine Learning and Defect Prediction

23 name: postgresql

24 state: latest

25 - name: Ensure that postgresql is started

26 ansible.builtin.service:

27 name: postgresql

28 state: started

Listing 2.1: An example of Ansible code.

For example, Listing 2.1 shows an Ansible code snippet representing a playbook

that provisions and deploys a website. To this aim, it configures various aspects such

as the ports to open on the host container, the name of the user account, and the

desired database to deploy. It first targets the web servers to ensure that the Apache

server is at the latest version, and then the database servers to ensure that PostgreSQL

is at the latest version and started. It achieves this by mapping the hosts to their

respective tasks. There, yum and service are modules to manage packages with the

yum package manager and to control services on remote hosts, respectively; name

(i.e., the name of the package and the database) and state (i.e., whether present,

absent or otherwise) are parameters of these modules. In short, by composing a

playbook of multiple plays, it is possible to orchestrate multi-machine deployments

and run specific commands on them in the webservers and databases groups.

2.2 Machine Learning and Defect Prediction

Machine Learning is a subfield of artificial intelligence (AI) that focuses on the

development of algorithms and models that enable computer systems to learn and

make predictions or decisions without being explicitly programmed. It involves the

use of statistical techniques to enable computers to learn from and analyze large

amounts of data.

In machine learning, algorithms are trained on data to recognize patterns, make

predictions, or take actions based on that data. The learning process involves adjust-

ing the parameters or internal representations of the algorithms to improve their

performance over time. This is typically done through the use of labeled training

data, where the algorithm is provided with input data and the corresponding correct

7

2.2 − Machine Learning and Defect Prediction

output or label. The algorithm then learns to map the input data to the correct output

by identifying patterns and relationships within the data.

Machine learning can be categorized into several types, including supervised

learning, unsupervised learning, semi-supervised learning, and reinforcement learn-

ing. Supervised learning involves training algorithms using labeled data, while

unsupervised learning involves finding patterns and structures in unlabeled data.

Semi-supervised learning combines elements of both supervised and unsupervised

learning, while reinforcement learning involves training algorithms through interac-

tion with an environment to maximize rewards.

Machine learning has a wide range of applications, including image and speech

recognition, natural language processing, recommendation systems, fraud detection,

autonomous vehicles, medical diagnosis, and many others. It has become an essential

tool in various industries and continues to advance with the availability of large

datasets, improved algorithms, and increased computational power.

Supervised Learning is a type of machine learning where an algorithm learns from

labeled training data to make predictions or decisions. In supervised learning, the

training data consists of input samples and their corresponding desired outputs or

labels. The goal of supervised learning is to train a model or algorithm to generalize

and accurately predict the correct output for new, unseen input data. During the

training phase, the algorithm learns the relationship between the input features and

the corresponding labels by minimizing the difference between its predicted outputs

and the true labels in the training data. Supervised learning can be further divided

into two main categories:

Regression. In regression tasks, the goal is to predict a continuous numerical value

as the output. The algorithm learns a mapping between the input features and

a continuous target variable. For example, predicting the price of a house based

on its features such as size, number of rooms, and location.

Classification. In classification tasks, the goal is to predict a discrete class label as the

output. The algorithm learns to classify input data into predefined categories

or classes. For example, classifying emails as spam or not spam based on their

content and attributes.

8

2.3 − Program Dependence Graph

Defect Prediction refers to the process of using historical data and machine learn-

ing techniques to estimate or predict the likelihood of defects or bugs in software

modules or projects. It aims to identify areas of code that are more likely to contain

defects, allowing developers to allocate resources more effectively for testing and

maintenance activities. Defect prediction can help software development in several

ways, including:

Early identification of high-risk areas. Developers can focus their testing and de-

bugging efforts on code modules predicted to have a higher likelihood of

defects, thereby improving software quality.

Resource allocation. By predicting defect-prone areas, development teams can allo-

cate resources effectively, targeting code segments that require more attention,

testing, or code review.

Maintenance and software evolution. Defect prediction models can aid in identi-

fying areas of code that are more likely to introduce defects during software

updates, helping developers plan maintenance activities accordingly.

2.3 Program Dependence Graph

A Program Dependence Graph is a graphical representation that depicts the

relationships and dependencies between components and entities within a program.

It provides a visual representation of how the program’s statements, functions, or

modules interact with each other. It captures two types of dependencies:

Control Flow Dependencies. Control flow dependencies represent the order in

which program statements are executed. They illustrate how the program

flows from one statement to another based on conditions, loops, branches, or

function calls. Control flow dependencies indicate the sequence of execution

and the decision points within the program.

Data Flow Dependencies. Data flow dependencies represent the flow of data or

information between different parts of the program. They show how variables

9

2.3 − Program Dependence Graph

or data values are produced, consumed, or transformed within the program.

Data flow dependencies can be used to track how variables are read, written,

or passed as parameters between functions or modules.

In a program dependency graph, nodes represent program components such as

statements, functions, or modules, and edges represent the dependencies between

them. Control flow dependencies are typically represented by directed edges, indi-

cating the flow of execution, while data flow dependencies can be represented by

labeled edges indicating the flow of data values or variables.

Tools and techniques, such as static code analysis or program slicing, can be

used to construct program dependency graphs automatically. These graphs can be

generated at different granularities, ranging from high-level representations of the

entire program to more detailed representations of specific functions or modules.

Overall, program dependency graphs serve as a powerful visualization tool for

understanding and analyzing the structure, behavior, and dependencies of a program,

enabling developers to gain insights and make informed decisions during program

comprehension, maintenance, or optimization tasks.

10

CHAPTER 3

Program-Dependence-Graph-based Metrics for Ansible

This chapter describes how the process of extracting PDGs at the task level was

performed starting from PDGs at the repository level. Metrics are also analyzed and

described.

3.1 Task-level Program Dependence Graphs for Ansible

The PDG was extracted using the PDGs proposed by Opdebeeck et al. [8, 21], who

proposed a Program Dependence Graph (PDG) representation for Ansible scripts.

Their PDG is a graph that captures the control flow and data flow of an Ansible script.

The nodes of the graph represent elements of the script, such as tasks, expressions,

variables, and data literals. The edges represent control flow (between tasks) or

various types of data flow (between data and tasks).

The tool extracts the whole-project PDG, this means that the resulting graph

represents the entire structure of the repository, such as modules, roles, playbooks,

and inventory. To extract metrics based on the PDG, we need to work at a lower level.

We have already performed a literature analysis to understand how PDG metrics

could be applied in IaC. We obtained a set of metrics based on the analysis of Program

Dependence Graph [22, 23], which considers several characteristics such as the

11

3.1 − Task-level Program Dependence Graphs for Ansible

program size, complexity, coupling, and cohesion to capture the program behavior.

However, such metrics were proposed for procedural code (i.e., implemented for the

C language); therefore, we performed an additional analysis to tailor their concepts,

e.g., slices and files, to IaC, e.g., tasks and playbooks. Thus, given the nature of the

metrics we intend to extract, we need to work at the task level, the equivalent of

slices in procedural code.

To work at a task level, we need to extract task-level PDGs from the repository-

level PDG extracted by the tool. To extract PDG at the task level, we implemented

an algorithm. The algorithm is an exploration algorithm that starts from the task

node and collects all the information about the task, e.g., the activating condition, the

variables used, the variables changed, the task that precedes it, the task that succeeds

it, the Ansible modules used, the parameters, and more.

Note that we cannot build a PDG for single files as this may incorrectly approxi-

mate data flow, as pointed out by Opdebeeck et al. [8].

An algorithm to extract PDG for Ansible. Below is a description of the algorithm

proposed by Opdebeeck. The algorithm takes as input the repository-level PDG

and the target task node against which we want to extract a task-level PDG, i.e., a

subgraph of the source graph.

The algorithm uses data flow edges to determine which nodes should be included in

the subgraph. While it uses control flow edges to determine the predecessors and

successors of the task, these edges are then used only to determine the control flow

of the target task.

At distance 1 from the target task node, most of the nodes of interest are present.

In particular, via control flow edges, can be reached the nodes of the predecessor

and successor task and the condition node, which contains the task activation

condition. The condition node, in turn, is connected with other nodes such as

the variable or expression nodes, that contribute to the value of the condition.

Given the importance of having the variables that contribute to task activation

available, we decided to implement different behavior for nodes with distance 1 than

for nodes with greater distance.

At distance 1, both incoming and outgoing edges are considered. Also at this distance,

12

3.1 − Task-level Program Dependence Graphs for Ansible

if a condition node reached by a control flow edge is present, it is added into the

subgraph and is used to continue the exploration since it is a node that is of interest

to our task and contains relevant information for calculating the metrics. All other

nodes reached by a control flow edge that are not condition nodes are included

in the subgraph to keep track of the control flow but are not used to continue

exploration. The rest of the nodes reached instead by data flow edges are inserted

into the subgraph and are, in turn, used to continue exploration.

At distances greater than 1, instead, only incoming data flow edges are considered.

This is because it is necessary to trace the entire data flow that is used in the task.

The return value of the algorithm is a list of nodes. Using the NETWORKX library

and the subgraph method we can now extract from the source graph a subgraph

consisting exclusively of the nodes marked by the algorithm.

1 function extractPDGTaskLevel(G, S):

2 V = G.nodes

3 E = G.edges(data=True)

4 source, target, keys = unzip(E)

5 workList, markList = set()

6 workList = S

7 w = workList.pop()

8 markList.add(w)

9 #distance 1 from task node

10 for i in range(0, length(V)):

11 if target[i] equals w:

12 if source[i] is not in markList:

13 if keys[i] is "CONTROL_FLOW_EDGE":

14 if node_type of source[i] is "Conditional":

15 add source[i] to workList

16 else:

17 add source[i] to markList

18 else:

19 add source[i] to workList

20 if source[i] equals w:

21 if target[i] is not in markList:

22 if keys[i] is "CONTROL_FLOW_EDGE":

23 add target[i] to markList

24 else:

13

3.1 − Task-level Program Dependence Graphs for Ansible

25 add target[i] to workList

26 while length(workList) is not 0:

27 w = workList.pop()

28 add w to markList

29 for i in range(0, length(V)):

30 if target[i] equals w:

31 if source[i] is not in markList:

32 if keys[i] is "CONTROL_FLOW_EDGE":

33 add source[i] to markList

34 else:

35 add source[i] to workList

36 return markList

Listing 3.1: Pseudocode of the algorithm that extracts a task-level PDG starting from a

repository-level PDG

The following Listing 3.2 is an ansible task extracted from a playbook of a reposi-

tory in our study. While Figure 3.1 is the representation of the task using the Program

Dependence Graph.

1 - name: Gather Distribution Info

2 ansible.builtin.setup:

3 gather_subset: distribution!

4 when:

5 - ansible_distribution is not defined

Listing 3.2: Ansible task.

Figure 3.1 is a graphical representation of the Program Dependence Graph of

Listing 3.2. Due to the large amount of information contained in the PDG, not all

information has been included in the graphical representation. The structure of the

PDG is contained in an XML document in the GraphML format. GraphML is a

standard format for representing the data of a graph.

1 <graph edgedefault="directed">

2 <data key="d0">RHEL7-STIG</data>

3 <data key="d1">latest</data>

4 <node id="746">

5 <data key="d2">Task</data>

14

3.1 − Task-level Program Dependence Graphs for Ansible

6 <data key="d5">"ansible.builtin.setup"</data>

7 <data key="d6">"Gather distribution info"</data>

8 </node>

9 <node id="747">

10 <data key="d2">Variable</data>

11 <data key="d6">"ansible_distribution"</data>

12 </node>

13 <node id="748">

14 <data key="d2">Expression</data>

15 <data key="d10">"ansible_distribution is not defined"</data>

16 </node>

17 <node id="749">

18 <data key="d2">IntermediateValue</data>

19 </node>

20 <node id="750">

21 <data key="d2">Conditional</data>

22 </node>

23 <node id="751">

24 <data key="d2">Literal</data>

25 <data key="d13">"str"</data>

26 <data key="d14">"distribution"</data>

27 </node>

28 <node id="752">

29 <data key="d2">Task</data>

30 <data key="d5">"ansible.builtin.assert"</data>

31 <data key="d6">"Check OS version and family"</data>

32 </node>

33 <edge source="746" target="752">

34 <data key="d15">ORDER</data>

35 </edge>

36 <edge source="747" target="748">

37 <data key="d15">USE</data>

38 </edge>

39 <edge source="748" target="749">

15

3.1 − Task-level Program Dependence Graphs for Ansible

40 <data key="d15">DEF</data>

41 </edge>

42 <edge source="749" target="750">

43 <data key="d15">USE</data>

44 </edge>

45 <edge source="750" target="746">

46 <data key="d15">ORDER</data>

47 </edge>

48 <edge source="750" target="752">

49 <data key="d15">ORDER</data>

50 </edge>

51 <edge source="751" target="746">

52 <data key="d15">KEYWORD</data>

53 <data key="d19">"args.gather_subset"</data>

54 </edge>

55 </graph>

Listing 3.3: Essential information of Ansible task in GraphML format.

Target

Task

Literal

KEYWORD

Condition
ORDER

Successor

Task

ORDER ORDER

Intermediate

Value

USE

Expression

DEF

Variable
USE

Action Expression Named value Literal Control flow Data flow

Figure 3.1: Program dependence graph for the example of Listing 3.2.

The task-level pdg extraction algorithm was integrated into a specific tool. It

16

3.2 − PDG-based Metrics for Ansible

takes as input a repository and its related PDG and returns the repository with all its

task-level PDGs. The output repository preserves the directory structure, while each

file containing one or more tasks is decomposed into many files, one per task. These

files are simply the representation of the task by PDGs in GraphML format.

To validate the implemented PDG slicer extractor, we performed a manual anal-

ysis. We selected a statistically significant sample of the PDG slices (confidence

level=95%, margin of error=5%) and, for each slice, we manually compared the slice

to the file from which it originates to validate the slicer.

Below we are going to show how metrics were extracted from each task-level pdg

and how we moved from task-level metrics to file-level metrics.

3.2 PDG-based Metrics for Ansible

The metrics we are going to extract are listed in the Table 3.1. However, during the

implementation, some inconsistencies emerged. In particular, as we mentioned in the

design, the metrics taskCount, taskCoverage, taskSize, taskSpatial and taskIdentifier were

discarded because they represent concepts close to some ICO metrics. in addition,

pdgVerticesSum have a similar definition to verticesCount, and was therefore discarded.

From the 17 metrics collected, after careful analysis, we reduced the metrics to 11.

The metrics for which an extractor has been implemented are: maxPdgVertices, lack-

OfCohesion, verticesCount, edgesCount, edgesToVerticesRatio, globalInput, globalOutput,

directFanIn, indirectFanIn, directFanOut, indirectFanOut

Before proceeding with the extraction of task-level metrics, it was necessary

to develop a docker image that would allow the tool proposed by Opdebeeck et

al. [8, 21] to work together with the PDG slicer extractor. The docker image consists

of a series of steps:

1. Checkout to the first commit in the time order that the target repository has

received during its lifecicle.

2. Launch the tool to extract the PDG of the entire project.

3. Launch the tool to extract task-level PDG.

17

3.2 − PDG-based Metrics for Ansible

4. Calculate metrics for each PDG at a task level.

5. Checkout to the next commit in the time order that the target repository has

received. Restart from step 2 until the last commit.

Table 3.1: Metrics leveraging Program Dependence Graphs in functional programming con-

textualized to Infrastructure as Code

Orig. PDG Metric Description IaC-PDG Metric Description

sliceCount Number of slices

a file contains.

sliceCount(x) = k,

where k is the number of

slices in file x.

taskCount Number of tasks a

playbook contains.

taskCount(x) = k,

where k is the number of

tasks in playbook x.

sliceSize Average number of

lines of code (LOC)

in a module’s slices.

sliceSize(x) = ∑k
i=1 Si/k,

where Si is the number

of LOC in slice i and k is

the number of slices in

module x.

taskSize Average number of

lines of code (LOC)

in a playbook’s tasks.

taskSize(x) = ∑k
i=1 Si/k,

where Si is the number

of LOC in task i and k is

the number of tasks in

playbook x.

sliceIdentifier Average number of

distinct occurrences of

programmer-defined

labels within a slice.

sliceIdenti f ier(x) =

∑k
i=1 SIi/k, where SIi is

the number of identifiers

in slice i, and k is the

number of slices in

module x.

taskIdentifier Average number of

distinct occurrences of

programmer-defined

labels within a task.

taskIdenti f ier(x) =

∑k
i=1 SIi/k, where SIi is

the number of identifiers

in task i, and k is the

number of tasks in

playbook x.

18

3.2 − PDG-based Metrics for Ansible

sliceSpatial Average spatial dis-

tance in LOC between

the definition and the

last use of the slice

divided by the module

size. sliceSpatial(x) =

∑k
i=1 sliceDistance(i)/k,

where k is the num-

ber of slices in x.

sliceDistance(i) =

(Smi − Sni)/q, where

Smi is the line number

of the first statement

in slice i, Sni is the

line number of the last

statement in slice i, and

q is the module size in

LOC.

taskSpatial Average spatial dis-

tance in LOC between

the definition and the

last use of the task

divided by the file

size. taskSpatial(x) =

∑k
i=1 taskDistance(i)/k,

where k is the num-

ber of tasks in x.

taskDistance(i) =

(Smi − Sni)/q, where

Smi is the line number of

the first statement in task

i, Sni is the line number

of the last statement

in task i, and q is the

playbook size in LOC.

sliceCoverage Average ratio between

the slice sizes and the

file’s LOC.

taskCoverage Average ration between

the task’s sizes and the

playbook’s LOC.

verticesCount Number of vertices in a

function’s PDG.

verticesCount The number of vertices

in a task’s PDG.

edgesCount Number of edges in a

function’s PDG

edgesCount Number of edges in a

task’s PDG

edgesToVerticesRatio Ratio between the num-

ber of dependence edges

and the number of ver-

tices PDG for a given

function’s PDG.

edgesToVerticesRatio Ratio between the num-

ber of dependence edges

and the number of ver-

tices PDG for a given

task’s PDG.

sliceVerticesSum Sum of the vertices con-

tained in each function’s

slice.

pdgVerticesSum Sum of the vertices

contained in each

playbook’s task

19

3.2 − PDG-based Metrics for Ansible

maxSliceVertices Number of vertices of

the slice’s PDG with

the maximum number of

vertices in all function’s

slices of a module.

maxPdgVertices Number of vertices of

the task’s PDGs with

the maximum number

of vertices in all task’s

PDGs of a playbook.

globalInput Number of parameters

and non-local variables

in a function.

globalInput The number of parame-

ters and non-local vari-

ables in a task.

globalOutput Number of non-local

variables modified in a

function.

globalOutput Number of non-local

variables modified in a

task.

directFanIn Sum of the number of

slices in other modules

that use the output vari-

ables directly modified

in a function.

directFanIn Sum of the number of

tasks in other playbooks

that use the output vari-

ables directly modified

in a task.

indirectFanIn Sum of the number of

slices in other modules

that use the output vari-

ables indirectly modified

in a function.

indirectFanIn Sum of the number of

tasks in other playbooks

that use the output vari-

ables indirectly modified

in a task.

directFanOut Sum of the number slices

in other modules whose

output variables are di-

rectly modified and used

in a function.

directFanOut Sum of the number of

tasks in other modules

whose output variables

are directly modified and

used in a task.

indirectFanOut Sum of the number slices

in other modules whose

output variables are indi-

rectly modified and used

in a function.

indirectFanOut Sum of the number of

tasks in other modules

whose output variables

are indirectly modified

and used in a task.

lackOfCohesion The number of shared

vertices between func-

tion’s slices.

lackOfCohesion The number of shared

vertices between play-

book’s tasks.

20

CHAPTER 4

Research Methodology

The goal of the study is to evaluate whether metrics extracted from the program

dependence graph are suitable for the defect prediction model in a within-project

setup, with the purpose of improving the early detection of defects in IaC scripts.

The perspective is of researchers who are interested in improving the effectiveness of

defect prediction models applied in the context of Infrastructure as Code.

4.1 Research Questions

Our empirical investigation aims to answer the following research questions

(RQs):

RQ1. Which metrics related to the program dependence graph are good defect predictors?

RQ2. What is the best defect prediction model based on the metrics derived from PDG?

RQ3. To what extent the PDG model is complementary to the state-of-the-art model?

RQ4. Does a combination of PDG-based, structural, and process metrics boost the perfor-

mance of IaC defect prediction?

21

4.2 − Context Selection

With RQ1, we seek to understand which metrics related to the program depen-

dence graph contribute the most to detecting defects in IaC scripts. These observa-

tions were used to (i) quantify the predictive power of metrics based on the program

dependence graph (PDG) and (ii) identify the most promising features to include

in a prediction model of failure-prone IaC scripts. In RQ2, we employed the most

promising metrics coming from RQ1 in experimentation aimed at establishing the

best machine learning model relying on PDG metrics. Then we performed a further

step ahead, namely that of understanding how complementary the model coming

from RQ2 with respect to the state-of-the-art model proposed by Dalla Palma et

al. [20]. The outcome of RQ3 revealed insights into the potential added value of the

model based on PDG metrics: such potential was finally quantified in RQ4, where

we experimented with how different feature sets behave independently from each

other and how they augment each other. As a last step, we addressed our working

hypothesis by defining a more specific pair of null and alternative hypotheses, whose

validity was statistically addressed. To design and report our study, we followed

the empirical software engineering guidelines by Wohlin et al. [24], other than the

ACM/SIGSOFT Empirical Standards.1

4.2 Context Selection

We collected data from the dataset of 139 open-source Ansible projects, publicly

available on GITHUB and released by Dalla Palma et al. [20]. The dataset allowed

us to compare the performance of models trained using structural, process, and

PDG metrics. GitHub repositories satisfied specific criteria described in Table 4.1 and

Metrics are grouped into four categories described in Table 4.2

The first step consisted of cloning all 139 repositories. During the cloning step,

two repositories reported fatal errors that prevented the repositories from being

cloned correctly. In particular, the Git tree of the repository appears to be corrupted,

which prevents not only cloning but also the checkout operation. The repositories

that have been successfully cloned are 137.

1Empirical Standards: https://github.com/acmsigsoft/EmpiricalStandards.

22

https://github.com/acmsigsoft/EmpiricalStandards

4.3 − Empirical Study Variables

Table 4.1: GitHub repositories criteria

Criteria

The repository has at least one push event to its master branch in the last six months

The repository has at least two releases

At least 11% of the files in the repository are IaC scripts

The repository has at least two core contributors

The repository has evidence of continuous integration practice, such as the presence of a

.travis.yaml file

The repository has a comments ratio of at least 0.2%

The repository has a commit frequency of at least 2 per month on average

The repository has an issue frequency of at least 0.023 events per month on average

The repository has evidence of a license, such as the presence of a LICENSE.md file

The repository has at least 190 source lines of code

Table 4.2: Metrics description

Metric Description

IaC-Oriented Metrics of structural properties derived from the source code of infrastructure

scripts

Delta Metrics that capture the amount of change in a file between two successive

releases, collected for each IaC-oriented metric

Process Metrics that capture aspects of the development process rather than aspects of

the code itself. A description of the process metrics in this dataset can be found

here

PDG Metrics Metrics that capture aspects of the data flow and the control flow of infrastruc-

ture scripts.

4.3 Empirical Study Variables

The second step to answer the research questions posed in our study concerned

the definition of the empirical study variables, namely (1) the dependent variable to

predict and (2) the features to be used as independent variables.

Dependent Variable. The goal of our study is to automatically detect the presence

of a defect in infrastructural code components. Therefore, as a dependent variable,

23

https://pydriller.readthedocs.io/en/latest/processmetrics.html

4.4 − Machine Learning for Defect Prediction

we rely on a binary value indicating the presence/absence of a bug.

Independent Variables. We have already performed a literature analysis to un-

derstand how PDG metrics could be applied in IaC. We obtained a set of metrics

based on the analysis of program dependence graph [22, 23], which consider several

characteristics such as the program size, complexity, coupling, and cohesion to cap-

ture the program behavior. However, such metrics were proposed for procedural

code (i.e., implemented for the C language); therefore, we performed an additional

analysis to tailor their concepts, e.g., slices and files, to IaC, e.g., tasks and playbooks.

Table 3.1 shows the complete set of metrics we will experiment with. The metrics

was extracted using the PDGs proposed by Opdebeeck et al. [8, 21]. However, dur-

ing the implementation, some inconsistencies emerged. In particular, the metrics

taskCount, taskCoverage, taskSize, taskSpatial and taskIdentifier were discarded because

they represent concepts close to some ICO metrics. In addition, pdgVerticesSum have

a similar definition to verticesCount, and was therefore discarded. From the 17 metrics

collected, after careful analysis, we reduced the metrics to 11.

The metrics for which an extractor has been implemented are: maxPdgVertices, lack-

OfCohesion, verticesCount, edgesCount, edgesToVerticesRatio, globalInput, globalOutput,

directFanIn, indirectFanIn, directFanOut, indirectFanOut.

4.4 Machine Learning for Defect Prediction

The following shows how we leveraged machine learning classification.

Selecting Machine Learning Algorithms. In the context of our study, we experi-

mented with multiple machine learning classifiers. First, we included Naive Bayes [25]

and Logistic Regression [26] as classifiers that do not require much training data. Then,

we considered Decision Tree [27], Random Forest [28], and Support Vector Machine [29],

which are more flexible and powerful classifiers. The selection is mainly driven

by our willingness to conduct a fair comparison with the state of the art. Indeed,

our study builds on top of the findings by Dalla Palma et al. [20] and verifies the

24

4.4 − Machine Learning for Defect Prediction

contributions brought by PDG metrics to IaC defect prediction: as such, we opt for

the use of the same set of classifiers used in the baseline study [20]. In this way, our

work may provide insights into the usefulness of PDG metrics as defect predictors

by keeping the same working environment as Dalla Palma et al. [20] in an effort to

provide the research community with results that may be more easily interpreted

and compared. The assessment of more sophisticated approaches, e.g., deep learning,

should therefore be considered out of the scope of this study and part of future

research efforts.

Configuration and Training. When training the selected machine learners, we need

to consider that class imbalance is one of the major obstacles to proper classifica-

tion by supervised learning algorithms [30]. This observation is particularly true in

defect prediction, where the neutral class outnumbers the failure-prone class. We

experimented with several under- and over-sampling configurations to overcome

this obstacle. Specifically, we considered using the NEARMISS 1, NEARMISS 2, and

NEARMISS 3 algorithms for the under-sampling. Finally, we experimented with a

RANDOM UNDERSAMPLING approach that randomly explores the distribution of

majority instances and under-samples them. As for the over-sampling, we exper-

imented with Synthetic Minority Over-sampling Technique (SMOTE) and advanced

versions of this algorithm, i.e., Adaptive Synthetic Sampling Approach (ADASYN)

and the BORDERLINE-SMOTE. We will also experiment with a RANDOM OVERSAM-

PLING approach that randomly explores the distribution of the minority class and

over-samples them. Two main observations drive the selection of these balancing

techniques. On the one hand, they make different assumptions on the underlying

data distribution, hence allowing us to experiment with multiple algorithms and

evaluate how the built prediction models react to them - the insights coming from

this analysis would benefit the research community, which may learn more about

how different data balancing solutions affect IaC defect prediction models. On the

other hand, these techniques were also experimented with by Dalla Palma et al. [20]:

as explained earlier, this choice allows us to compare our results with previous ones

more fairly.

The training data was normalized, scaling numeric attributes. We plan to evaluate

25

4.4 − Machine Learning for Defect Prediction

Figure 4.1: Walk-forward validation process.

three configurations for data normalization, namely (i) no normalization, (ii) min-

max transformation to scale each feature individually in the range [0,1], and (iii)

standardization of the features by removing the mean and scaling to unit variance.

Finally, we configured the hyper-parameters of the selected machine learning

classifiers by using the RANDOM SEARCH algorithm [31], which randomly samples

the hyper-parameters space to find the best combination of hyper-parameters max-

imizing a scoring metric (in our case, the Matthews Correlation Coefficient). We

developed the entire pipeline with the SCIKIT-LEARN library in PYTHON.

Validation of the Approach. To assess the performance of our models, we per-

formed a within-project validation to understand how accurate the performance

can be when a defect prediction model is trained using data from the same project

where it should apply. The model selection was guided by a randomized search of

the models’ parameters through a walk-forward validation [32]. In a walk-forward

validation, the dataset represents a time series that can be divided into chronologi-

cally orderable parts, e.g., a project release. In each run, all data available before the

part to predict was used as the training set, while the part to predict was used as the

test set, preventing the test set has data antecedent to the training set. Afterward, the

model performance was computed as the average of various runs. Figure 4.1 shows

the validation process. Specifically, the number of iterations was equal to the number

of parts minus one. We trained each model on the first n releases and tested on the

(n+1)-th release.

26

4.5 − RQ1 - In Search of Suitable Program Dependency Graph Metrics for Defect
Prediction Models

4.5 RQ1 - In Search of Suitable Program Dependency

Graph Metrics for Defect Prediction Models

To evaluate the relative predictive power of the metrics listed in Table 3.1, we

performed recursive feature selection to find the metrics that maximize the perfor-

mance and rank them according to their importance for the prediction. Given an

external estimator that assigns weights to features, recursive feature elimination

(RFE) selected features by recursively considering smaller and smaller sets of features

that optimize the performance criteria. Specifically, the algorithm trains the estimator

on the initial set of features and ranks the features by importance. The least important

features are pruned from the current set. This procedure was recursively repeated

on the pruned set until the algorithm selects the desired number of features. Indeed,

RFE requires selecting the number of features to keep, which is often unknown in

advance. To find the optimal number of features, we applied cross-validation to score

the different feature subsets and select the best-scoring collection of features. To this

end, we employed the RFECV method2 available in SCIKIT-LEARN.

4.6 RQ2 - In Search of the Best Defect Prediction Model

based on Program Dependency Graph Metrics

To assess the performance of our models, we experimented with multiple com-

binations, e.g., we experimented with how the performance varies when including

(and excluding) the normalization or the data balancing steps.

To address RQ2, we first computed metrics such as precision, recall, F-Measure,

Matthews Correlation Coefficient (MCC), and the Area Under the Curve - Precision-Recall

(AUC-PR). In addition, to account for the imbalanced nature of the dataset exploited,

we also computed micro and macro averages of the metrics, i.e., variants of the

evaluation metrics that weight the performance achieved by a model according to

the distribution of the two classes, i.e., defective and non-defective IaC scripts. After-

2Available at: https://scikit-learn.org/stable/modules/generated/sklearn.

feature_selection.RFECV.html

27

https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html

4.7 − RQ3 - Complementarity between the PDG Metrics-based Model and the
Baselines

ward, we established the best model by comparing the MCC of the experimented

models through the Wilcoxon’s rank test [33], applying the post-hoc Bonferroni’s

correction [34] to deal with the multiple comparisons that were performed during the

validation process. In addition, we’ve also computed the Cohen’s δ effect size mea-

sure [35] to assess the magnitude of the differences observed. We’ve still computed

and discussed the additional evaluation criteria metrics, i.e., F-Measure, Precision,

Recall, and AUC-PR, to provide a more comprehensive overview of the capabilities of

the experimented models. For these evaluation metrics, we reported statistics (i.e.,

mean, median, minimum, maximum, and standard deviation) about the classifier

achieving the best performance. However, we’ve limited the statistical analysis to

MCC as it is considered one of the most valuable and unbiased metrics to compare

prediction models statistically [36].

4.7 RQ3 - Complementarity between the PDG Metrics-

based Model and the Baselines

Upon addressing RQ2 and assessing the performance of the defect prediction

model based on PDG metrics, we compared it with the existing baseline developed

by Dalla Palma et al. [20]. Specifically, we ran the baseline and conducted a comple-

mentarity analysis to understand the overlap with the PDG-based model. Given the

two prediction models, mi and mj, we computed (1) the number of bugs correctly

predicted by both mi and mj, (2) the number of bugs correctly predicted by mj and

missed by mi, (3) the number of bugs correctly predicted by mi only and missed

by mj, and (4) the number of bugs missed by both mi and mj. Such an analysis

could provide insights into the complementarity of the two approaches, other than

assessing the actual value of our model compared to the baseline. The overlap met-

rics indicated the extent to which a combination of the model built in RQ2 and the

baseline [20] would have the potential to improve further the performance of IaC

defect prediction, i.e., the likelihood that our working hypothesis may be accepted.

We finally address our hypothesis through the next research question.

28

4.8 − RQ4 - On the Performance of the Baselines and a Novel “Hybrid" Model

4.8 RQ4 - On the Performance of the Baselines and a

Novel “Hybrid" Model

Upon assessing the complementarity between the PDG metrics-based and state-

of-the-art metrics-based models, we built and assessed the performance of a “hybrid”

defect prediction model that combines the metrics from the two individual models.

We explored the relative prediction power of the metric sets, i.e., Best-PDG from RQ2,

and ICO, Delta, and Process experimented by Dalla Palma et al. [20]. The four metrics

sets were combined to construct 15 different models: “Best-PDG", i.e., the best model

coming from RQ2, “ICO", i.e., the best model coming from the work by Dalla Palma

et al. [20], “Delta", “Process", “Best-PDG + ICO", “Best-PDG + Delta", “Best-PDG

+ Process", “Delta + Process", “Delta + ICO", “Process + ICO", “Best-PDG + ICO +

Delta", “Best-PDG + ICO + Process", “Best-PDG + Delta + Process", “ICO + Delta +

Process", “Total". In doing so, we compared various combinations of metric sets with

respect to the individual models only relying on PDG, structural, and process metrics,

respectively. We computed RFE to score the different feature subsets and select the

best-scoring collection of features. Finally, we employed the same evaluation metrics

as RQ2, i.e., precision, recall, F-Measure, MCC, and AUC-PR.

29

CHAPTER 5

Data analysis and results

5.1 Metrics Extraction

At the end of the docker image execution, we collected the results of the extraction;

137 repositories and all their respective commits were analyzed. The entire Dalla

Palma [20] study dataset has 227,273 files, for each of which ICO metrics, Delta

metrics, and Process metrics were extracted. Our extraction process was successful on

80 repositories. These 80 repositories represented 21,197 files out of the total 227,273.

Of these 21,197 files, only 13,219 files were found to be suitable. The remaining files

are files that do not contain tasks, configuration files, templates, and inventories.

Therefore, since they had no relevant content for metrics calculation, they were

ignored. The remaining 57 repositories for which metrics extraction was unsuccessful

represent 206,075 files out of the total 227,273. The reason for this imbalance is the

size of the repositories. Among the unanalyzed repositories, there are 6 repositories

that are very large compared to the average. They account for about 140,000 files out

of 227,273, thus more than half.

We focused on them to understand why they are not being analyzed:

• one repository had a problem on the working tree, thus not allowing checkouts.

30

5.2 − RQ1 - In Search of Suitable Program Dependency Graph Metrics for Defect
Prediction Models

• four repositories (redhat-openstack/infrared of 50,000 files, PGBlitz/PGBlitz.com

of 47,000 files, valet-sh/valet-sh of 13,000 files and ceph/ceph-ansible of 11,000

files) were revealed to be poorly structured repositories that did not allow the

tool to extract the PDG.

ValueError: Could not auto-detect whether project at path is a role or a playbook

• one repository (openstax/cnx-deploy of 21,000 files) was processed by the

PDG-tool but the result was an empty PDG.

We extracted metrics for 13,219 files out of 227,273.

5.2 RQ1 - In Search of Suitable Program Dependency

Graph Metrics for Defect Prediction Models

The results of RFECV show a median of four optimal features per model, with a

mean MCC and standard deviation of 0.64 and 0.31, respectively. However, the lower

number of optimal features suggests that most of them are redundant and decrease

the overall performance.

Table 5.1: Features importance and rank

Metric Occurrences Rank

maxPdgVertices 57 2.21

verticesCount 50 2.92

edgesToVerticesRatio 42 3.95

edgesCount 41 3.88

globalInput 38 4.79

lackOfCohesion 24 13.58

indirectFanOut 19 17.47

indirectFanIn 9 50.33

directFanOut 7 61.14

directFanIn 3 188.33

globalOutput 2 310.5

31

5.3 − RQ2 - In Search of the Best Defect Prediction Model based on Program
Dependence Graph Metrics

Table 5.1 shows a ranked list of the recurring features. As we can see, the most

important predictors, those that contribute substantially to prediction, are the first 4

and they are: maxPdgVertices, verticesCount, edgesToVerticesRatio, edgesCount. We could

also consider the fifth predictor globalInput because rank value remains in line with

the first 4 and diverges considerably from the remaining ones.

RQ1 Summary. The most occurring predictors are MAXPDGVERTICES, EDGESCOUNT,

EDGESTOVERTICESRATIO, and VERTICESCOUNT.

5.3 RQ2 - In Search of the Best Defect Prediction Model

based on Program Dependence Graph Metrics

We experimented with how performance varies by including and excluding

normalization or data balancing steps to find the best possible combination. The final

result shows that the best combination consists of no data balancing and a min-max

transformation. Based on this configuration, five classifiers were trained, Naive Bayes

(NB), Logistic Regression (LR), Decision Tree (DT), Random Forest (RF) and Support Vector

Machine (SVM). First, we analyzed the number of times each evaluated classifier

achieved the best performance (i.e., it was the best model in terms of MCC) for a

given project. Then, as it was difficult to make assumptions about the underlying

distribution with many evaluation measures, we applied a non-parametric test to

assess the differences’ significance. We established the best model by comparing the

MCC of the experimented models through the Wilcoxon’s rank test [33], applying the

post-hoc Bonferroni’s correction [34] to deal with the multiple comparisons that were

performed during the validation process. In addition, we also computed the Cohen’s

δ effect size measure [35] to assess the magnitude of the differences observed. A

Cohen’s d below 0.2 is considered negligible, between 0.2 and 0.5 it is small, between

0.5 and 0.8 it is medium, and it is large above 0.8.

Table 5.2 shows each evaluated model’s occurrences as the best model for any

given project in terms of MCC. As can be observed, DECISION TREE and RANDOM

FOREST are the classifiers that occur most (47/80 and 46/80), followed by NAIVE

32

5.3 − RQ2 - In Search of the Best Defect Prediction Model based on Program
Dependence Graph Metrics

Table 5.2: Number of Times a Model Appears Among the Best-Performing Models

Learning Technique Occurrences

DT 47

RF 46

NB 22

LR 15

SVM 11

BAYES (22/80), LINEAR REGRESSION (15/80), and SUPPORT VECTOR MACHINE

(11/80). It is important to mention that the sum of the occurrences is not equal to 80

as, for some projects, multiple models achieved the same performance.

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

NB

LR

SVM

DT

RF

MCC

Figure 5.1: Matthews Correlation Coefficient of each Learning Technique

Figure 5.1 shows that the difference among the learning techniques in terms of

mean MCC are in most cases very high. The average MCC ranges from 0.25 for the

worst-performing technique, namely LINEAR REGRESSION, to above 0.64 and 0.63

for the most-performing techniques, namely RANDOM FOREST and DECISION TREE.

1 2 3 4 5

Random Forest

Decision Tree
SVC

Naive Bayes

Linear Regression

Figure 5.2: Nemenyi’s Classifiers Diagram

33

5.4 − RQ3 - Complementarity between the PDG Metrics-based Model and the
Baselines

RQ2 Summary. The models trained using Random Forest and Decision Tree perform

statistically better than those relying on the remaining classifiers. The difference is

statistically different with large effect size.

Figure 5.2 shows the pairwise comparisons between classifiers. The performance

difference between RANDOM FOREST and DECISION TREE is not significant and also

between SUPPORT VECTOR MACHINE and NAIVE BAYES.

5.4 RQ3 - Complementarity between the PDG Metrics-

based Model and the Baselines

Upon addressing RQ2 and assessing the performance of the defect prediction

model based on PDG metrics, we compared it with the existing baseline developed

by Dalla Palma et al. [20]. Specifically, we ran the baseline and conducted a comple-

mentarity analysis to understand the overlap with the PDG-based model. Given the

two prediction models, mi and mj, we computed (1) the number of bugs correctly

predicted by both mi and mj, (2) the number of bugs correctly predicted by mj only

and missed by mi, (3) the number of bugs correctly predicted by mi only and missed

by mj, and (4) the number of bugs missed by both mi and mj.

RQ3 Summary. PDG metrics improve the number of bugs correctly predicted by

the baseline model based on Delta metrics alone by 23.8%. PDG metrics improve the

number of bugs correctly predicted by the baseline model based on Process metrics alone

by 21.13%. PDG metrics improve the number of bugs correctly predicted by the baseline

model based on ICO metrics alone by 1.6%.

PDG metrics-based models correctly predicted the number of bugs over 20% more

than Delta and Process metrics-based models.

34

5.5 − RQ4 - On the Performance of the Baselines and a Novel “Hybrid" Model

Table 5.3: Complementarity between the PDG metrics-based model and the baseline model

A ∩ B A \ B B \ A Missed by both

PDG - Delta 66.50% 23.80% 4.55% 5.15%

PDG - Process 69.16% 21.13% 4.75% 4.95%

PDG - ICO 88.70% 1.60% 6.92% 2.79%

5.5 RQ4 - On the Performance of the Baselines and a

Novel “Hybrid" Model

In RQ4, we combined the four metrics sets to construct 15 different hybrid defect

prediction models. We employed the same evaluation metrics as RQ2, i.e., precision,

recall, F-Measure, MCC, and AUC-PR. We used the Nemenyi test, a post-hoc test

intended to find the groups of data that differ after a global statistical test. As for the

statistical test, we used the Friedman test. The procedure involves ranking each row

together and then considering the values of ranks by columns.

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

PDG

Delta

ICO

Process

PDG+Delta

PDG+ICO

PDG+Process

Delta+ICO

Delta+Process

ICO+Process

PDG+Delta+ICO

PDG+Delta+Process

PDG+ICO+Process

Delta+ICO+Process

Total

MCC

Figure 5.3: Matthews Correlation Coefficient of each Set of Metrics

35

5.5 − RQ4 - On the Performance of the Baselines and a Novel “Hybrid" Model

Figure 5.3 shows that the gap between the model’s performance featuring ICO

and those relying on PDG, Process, or Delta metrics is evident. However, more

sets of metrics produce similar results. PDG metrics and PDG+ICO are not statisti-

cally different. Adding PDG metrics to ICO metrics does not improve the model’s

performance.

1 3 5 7 9 11 13 15

PDG+ICO

ICO

PDG+Delta+ICO

Delta+ICO

PDG+ICO+Process

ICO+Process

PDG+Delta+ICO+Process
Delta+ICO+Process

PDG

PDG+Delta

PDG+Process

PDG+Delta+Process

Delta+Process

Process

Delta

Figure 5.4: Nemenyi post-hoc Critical Distance Diagram

Figure 5.4 shows the metrics compared and grouped into five sets of metrics. Each

group contains the combinations of metrics that have a non-statistically significant

performance difference. On the one hand, we note that PDG metrics can improve

the performance of Delta and Process metrics. On the other hand, the metrics based

on the program dependence graph have negligible effects on models employing

ICO metrics. In particular, PDG metrics combined with ICO metrics do not improve

the performance that ICO metrics alone have. Instead, combined with either Delta

metrics or Process metrics, they produce better models than those based on Delta

and Process metrics. Finally, models based on Delta and Process metrics produce the

worst performance, even when combined.

RQ4 Summary. PDG metrics can improve the performance of Delta and Process metrics.

However, such metrics have negligible effects on models employing ICO metrics.

36

CHAPTER 6

Discussion, Limitations, and Implications

In RQ1, we observed that the top-4 predictors (in terms of occurrences among

the most critical features resulting from the recursive feature elimination) include

maxPdgVertices, verticesCount, edgesToVerticesRatio, and edgesCount. All four

predictors similarly express the concept of size through the number of nodes and

edges and their ratio. A high number of edges indicates greater data flow and control

flow. This is much more relevant than the concept of direct or indirect modification

of a variable and its use in a task. We conjecture that this result is due to the concept

of idempotency in Ansible that limits modification. In RQ2, we observed that the

performance difference between Naive Bayes and SVC and between Random Forest

and Decision Tree is not statistically significant, although the former provided better

results most of the time. Random Forest and Decision Tree share a common algorithm

in their implementation. Random Forest is a decision tree-based ensemble method,

which means it uses decision trees as the main component of its classification process.

Hence, depending on the level of model flexibility you desire and the computational

resources at your disposal, you can opt for either option interchangeably without

significantly negatively affecting the prediction. The results achieved in the context of

RQ3 are surprising. For the collected Ansible-based projects, PDG metrics outperform

delta and process metrics, although the latter is often more effective when predicting

37

6 − Discussion, Limitations, and Implications

the failure-proneness of source code instances in traditional Defect Prediction. We

conjecture that this result is due to the lower number of infrastructure code changes

than application code, limiting the information exploitable by the process metrics.

Anyway, PDG metrics were found to be similar to ICO metrics. The first can cor-

rectly predict 90.3% of bugs with respect to the 95.6% of the second. The downside

of PDG metrics concerns extraction. The construction of a PDG requires that the

Ansible project compile correctly. During the life cycle of a project, it may happen

that one or more commits make the project uncompilable. As a result, the effort to

extract metrics and the possible absence of a set of metrics for each commit may

adversely affect their use. In RQ4, we observed that the metrics based on the program

dependence graph have negligible effects on models employing the ICO metrics.

The performance of PDG metrics is not statistically different from PDG+Delta+ICO,

Delta+ICO, PDG+ICO+Process, ICO+Process, Delta+ICO+Process, and Total. So we

can consider PDG metrics a good representative for all these sets of metrics. Finally,

PDG metrics can improve the performance of Delta and Process metrics.

Implications for researchers. There is still room for further research in this area.

Our findings put a baseline to investigate which prediction models should be used

based on the characteristics of the software project to analyze (e.g., the number of

contributors and commits, LOC, and the ratio of IaC files). This aspect is of particular

interest in the context of Cross-Project Defect Prediction, where the lack of historical

data forces organizations to use pre-trained models built on similar projects. Further

research is needed to understand the relationship between the failure-proneness of

Infrastructure-as-Code and the collected metrics. These results can lead to a better

understanding of which features to utilize to improve defect prediction of IaC.

Implications for practitioners. Practitioners who still do not use prediction models

for IaC can build upon our findings to implement novel models by extracting only

subsets of features such as the ones that we showed in RQ1. This aspect will reduce

the number of features to collect and speed up the training phase. For each project

on which we trained our models, we reported several statistics to allow practitioners

to compare their projects with those used in this study.

38

CHAPTER 7

Threats to Validity

This section discusses the potential threats that may have affected the validity of

our empirical study [24].

Threats to construct validity. Threats to construct validity concerns potential issues

or challenges that can affect the accuracy and appropriateness of the constructs or

concepts being studied. The first possible threat concerns the projects we analyzed in

our study. We relied on publicly available resources built in the context of previous

research [20] that have already been used and validated, making us confident of

the reliability of the selected projects. Another threat concerns how we collected

the set of PDG metrics. We used the PDG builder that has already been used and

validated [8, 21]. We attempted to perform manual investigations on a statistically

significant sample of PDG slices to assess the degree of accuracy of the extracted met-

rics (Section 4.3)—in this way, we were able to provide indications of the confidence

level of our conclusions.

Threats to internal validity. Threats to internal validity concern internal factors

we might not consider that could affect the investigated variables. In particular,

the choice of metrics might positively or negatively influence the classification. We

39

7 − Threats to Validity

mitigated this threat by considering a comprehensive set of PDG metrics gathered

from the literature [22, 23]. Similarly, data balancing is a critical aspect of defect

prediction, so we evaluated several over- and under-sampling techniques and how

they affect the model’s performance.

Threats to external validity. Threats to external validity concern the generalization

of results. First, we analyzed 139 Ansible-based systems from different application

domains and with different characteristics (e.g., number of contributors, size, num-

ber of commits, etc.). Second, our proposal revolves around within-project defect

prediction, so we learned features that characterize failure-prone IaC scripts from the

individual projects considered. Projects with a small number of defective instances

were discarded in this context: indeed, the absence of defects would not allow any

machine learner to distinguish failure-prone from failure-free scripts. Finally, another

threat is related to the classifier selection. We evaluated five classifiers widely used in

previous studies on bug prediction (e.g., [37, 38, 20]).

Threats to conclusion validity. Concerning the relationship between treatment and

outcome, we exploited a set of widely used metrics to evaluate the performance of

defect prediction techniques (i.e., precision, recall, F-measure, MCC, AUC-PR) [20, 12,

13]. In addition, we used appropriate statistical tests, i.e., the Wilcoxon Test and the

Cohen’s Delta, which allowed us to support our findings and address our hypothesis.

When assessing the contribution of the features to use in our approach, we relied on

the Recursive Feature Elimination algorithm [39], which the research community has

used for the same purpose [40, 20]. Furthermore, since we exploited change-history

information to compute the PDG metrics, our study’s evaluation design differs from

the k-fold cross-validation generally exploited while evaluating defect prediction

techniques. In particular, we used the whole history of a system for the evaluation by

adopting a walk-forward validation and assuring that new data (i.e., new releases)

used to evaluate the model were never antecedent to those used to train it.

Another potential limitation concerns the intrinsic lifecycle of IaC defects: they

must be reported and fixed before their introducing change is known. Our research

leveraged the SZZ algorithm and committed messages indicating defect-fixing ac-

40

7 − Threats to Validity

tivities to mine defect data. As such, we acknowledge that undocumented defects,

i.e., defects not reported in the issue tracker, could lead to classifying failure-prone

scripts as “neutral” mistakenly.

41

CHAPTER 8

Conclusion

The goal of the study is to evaluate whether metrics extracted from the program

dependence graph are suitable for the defect prediction model in a within-project

setup, to improve the early detection of defects in IaC scripts. We started working

toward this goal by computing the PDG metrics on a set of 139 Ansible projects. The

PDG was extracted using the PDGs proposed by Opdebeeck et al. [8, 21]. Then we ex-

perimented with multiple machine learning classifiers. We included Naive Bayes [25]

and Logistic Regression as classifiers that do not require much training data and Deci-

sion Tree [27], Random Forest [28], and Support Vector Machine [29], which are more flex-

ible and powerful classifiers. Finally, we conducted many experiments that allowed

us to answer the research questions. The PDG metrics that maximize the performance

of defect prediction models are maxPDGVertices, verticesCount, edgesToVerticesRatio

and edgesCount with a mean rank value of 2.21, 2.92, 3.65 and 3.88 respectively. The

Program Dependence Graph metrics-based models trained using Random Forest and

Decision Tree performed statistically better than those relying on the remaining classi-

fiers. Program Dependence Graph metrics improved the number of bugs correctly

predicted by 23.8% over Delta metrics alone, 21.13% over Process metrics alone, and

1.6% over ICO metrics alone. Finally, PDG metrics can improve the performance of

Delta and Process metrics. However, such metrics have negligible effects on models

42

8 − Conclusion

employing ICO metrics.

In summary, this thesis has explored the realm of defect prediction using Program

Dependence Graph metrics, uncovering their significance in enhancing software qual-

ity and providing a promising avenue for future research and practical application in

software development.

43

Bibliography

[1] C. Ebert, S. Technologyof, G. Gallardo, J. Hernantes, and N. Serrano, “Devops,”

Ieee Software, vol. 33, no. 3, pp. 94–100, 2016. (Citato a pagina 1)

[2] K. Morris, Infrastructure as code. O’Reilly Media, 2020. (Citato a pagina 1)

[3] L. Hochstein and R. Moser, Ansible: Up and Running: Automating configuration

management and deployment the easy way. " O’Reilly Media, Inc.", 2017. (Citato a

pagina 1)

[4] J. Ewart, M. Marschall, and E. Waud, Chef: Powerful Infrastructure Automation.

Packt Publishing Ltd, 2017. (Citato a pagina 1)

[5] J. Loope, Managing infrastructure with puppet: configuration management at scale.

" O’Reilly Media, Inc.", 2011. (Citato a pagina 1)

[6] M. Guerriero, M. Garriga, D. A. Tamburri, and F. Palomba, “Adoption, support,

and challenges of infrastructure-as-code: Insights from industry,” in 2019 IEEE

International Conference on Software Maintenance and Evolution (ICSME). IEEE,

2019, pp. 580–589. (Citato a pagina 1)

[7] Y. Kurniawan, Ansible for AWS. Leanpub, 2016. (Citato a pagina 1)

[8] R. Opdebeeck, A. Zerouali, and C. De Roover, “Smelly variables in Ansible

infrastructure code: detection, prevalence, and lifetime,” in Proceedings of the

44

Bibliography

19th International Conference on Mining Software Repositories, 2022, pp. 61–72.

(Citato alle pagine 1, 11, 12, 17, 24, 39 e 42)

[9] T. Sharma, M. Fragkoulis, and D. Spinellis, “Does your configuration code

smell?” in Proceedings of the 13th International Conference on Mining Software

Repositories, 2016, pp. 189–200. (Citato a pagina 1)

[10] J. Schwarz, A. Steffens, and H. Lichter, “Code smells in infrastructure as code,” in

2018 11Th International Conference on the Quality of Information and Communications

Technology (QUATIC). IEEE, 2018, pp. 220–228. (Citato a pagina 1)

[11] E. Van der Bent, J. Hage, J. Visser, and G. Gousios, “How good is your puppet?

an empirically defined and validated quality model for puppet,” in 2018 IEEE

25th International Conference on Software Analysis, Evolution and Reengineering

(SANER). IEEE, 2018, pp. 164–174. (Citato a pagina 1)

[12] A. Rahman and L. Williams, “Characterizing defective configuration scripts

used for continuous deployment,” in 2018 IEEE 11th International Conference on

Software Testing, Verification and Validation (ICST). IEEE, 2018, pp. 34–45. (Citato

alle pagine 1 e 40)

[13] ——, “Source code properties of defective infrastructure as code scripts,” Infor-

mation and Software Technology, vol. 112, pp. 148–163, 2019. (Citato alle pagine 1

e 40)

[14] A. Rahman, E. Farhana, and L. Williams, “The ‘as code’ activities: Development

anti-patterns for infrastructure as code,” Empirical Software Engineering, vol. 25,

pp. 3430–3467, 2020. (Citato a pagina 1)

[15] A. Rahman, E. Farhana, C. Parnin, and L. Williams, “Gang of eight: A defect

taxonomy for infrastructure as code scripts,” in Proceedings of the ACM/IEEE

42nd International Conference on Software Engineering, 2020, pp. 752–764. (Citato a

pagina 1)

[16] A. Rahman, C. Parnin, and L. Williams, “The seven sins: Security smells in

infrastructure as code scripts,” in 2019 IEEE/ACM 41st International Conference

on Software Engineering (ICSE). IEEE, 2019, pp. 164–175. (Citato a pagina 1)

45

Bibliography

[17] G. Ayyappan and S. Karpagam, “Analysis of a bulk service queue with unreli-

able server, multiple vacation, overloading and stand-by server,” International

Journal of Mathematics in Operational Research, vol. 16, no. 3, pp. 291–315, 2020.

(Citato a pagina 1)

[18] S. Chaisiri, R. Kaewpuang, B.-S. Lee, and D. Niyato, “Cost minimization for

provisioning virtual servers in amazon elastic compute cloud,” in 2011 IEEE 19th

Annual International Symposium on Modelling, Analysis, and Simulation of Computer

and Telecommunication Systems. IEEE, 2011, pp. 85–95. (Citato a pagina 1)

[19] R. S. Wahono, “A systematic literature review of software defect prediction,”

Journal of software engineering, vol. 1, no. 1, pp. 1–16, 2015. (Citato a pagina 1)

[20] S. Dalla Palma, D. Di Nucci, F. Palomba, and D. A. Tamburri, “Within-project

defect prediction of infrastructure-as-code using product and process metrics,”

IEEE Transactions on Software Engineering, vol. 48, no. 6, pp. 2086–2104, 2021.

(Citato alle pagine 2, 22, 24, 25, 28, 29, 30, 34, 39 e 40)

[21] R. Opdebeeck, A. Zerouali, and C. De Roover, “Control and data flow in security

smell detection for infrastructure as code: Is it worth the effort?” in Proceedings

of the 20th International Conference on Mining Software Repositories (MSR 2023),

2023, pp. 534–545. (Citato alle pagine 11, 17, 24, 39 e 42)

[22] B. S. Alqadi and J. I. Maletic, “Slice-based cognitive complexity metrics for

defect prediction,” in 2020 IEEE 27th International Conference on Software Analysis,

Evolution and Reengineering (SANER), 2020, pp. 411–422. (Citato alle pagine 11,

24 e 40)

[23] K. Pan, S. Kim, and E. J. Whitehead, Jr., “Bug classification using program slicing

metrics,” in 2006 Sixth IEEE International Workshop on Source Code Analysis and

Manipulation, 2006, pp. 31–42. (Citato alle pagine 11, 24 e 40)

[24] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén,

Experimentation in software engineering. Springer Science & Business Media,

2012. (Citato alle pagine 22 e 39)

46

Bibliography

[25] R. O. Duda, P. E. Hart et al., Pattern classification and scene analysis, ser. A Wiley-

Interscience publication. Wiley, 1973. (Citato alle pagine 24 e 42)

[26] M. P. LaValley, “Logistic regression,” Circulation, vol. 117, no. 18, pp. 2395–2399,

2008. (Citato a pagina 24)

[27] Y. Freund and L. Mason, “The alternating decision tree learning algorithm,” in

icml, vol. 99. Citeseer, 1999, pp. 124–133. (Citato alle pagine 24 e 42)

[28] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32, 2001.

(Citato alle pagine 24 e 42)

[29] W. S. Noble, “What is a support vector machine?” Nature biotechnology, vol. 24,

no. 12, pp. 1565–1567, 2006. (Citato alle pagine 24 e 42)

[30] G. E. Batista, R. C. Prati, and M. C. Monard, “A study of the behavior of sev-

eral methods for balancing machine learning training data,” ACM SIGKDD

explorations newsletter, vol. 6, no. 1, pp. 20–29, 2004. (Citato a pagina 25)

[31] J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization.”

Journal of machine learning research, vol. 13, no. 2, 2012. (Citato a pagina 26)

[32] D. Falessi, J. Huang, L. Narayana, J. F. Thai, and B. Turhan, “On the need

of preserving order of data when validating within-project defect classifiers,”

Empirical Software Engineering, vol. 25, pp. 4805–4830, 2020. (Citato a pagina 26)

[33] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics bulletin,

vol. 1, no. 6, pp. 80–83, 1945. (Citato alle pagine 28 e 32)

[34] M. A. Napierala, “What is the bonferroni correction?” Aaos Now, pp. 40–41, 2012.

(Citato alle pagine 28 e 32)

[35] J. Cohen, “The effect size index: d. statinformation and software technologyical

power analysis for the behavioral sciences,” Abingdon-on-Thames: Routledge

Academic, 1988. (Citato alle pagine 28 e 32)

[36] J. Yao and M. Shepperd, “The impact of using biased performance metrics on

software defect prediction research,” Information and Software Technology, vol.

139, p. 106664, 2021. (Citato a pagina 28)

47

Bibliography

[37] D. Di Nucci, F. Palomba, G. De Rosa, G. Bavota, R. Oliveto, and A. De Lucia,

“A developer centered bug prediction model,” IEEE Transactions on Software

Engineering, vol. 44, no. 1, pp. 5–24, 2017. (Citato a pagina 40)

[38] D. Bowes, T. Hall, and J. Petrić, “Software defect prediction: do different classi-

fiers find the same defects?” Software Quality Journal, vol. 26, pp. 525–552, 2018.

(Citato a pagina 40)

[39] X.-w. Chen and J. C. Jeong, “Enhanced recursive feature elimination,” in Sixth

International Conference on Machine Learning and Applications (ICMLA 2007). IEEE,

2007, pp. 429–435. (Citato a pagina 40)

[40] A. Adorada, P. W. Wirawan, K. Kurniawan et al., “The comparison of feature

selection methods in software defect prediction,” in 2020 4th International Con-

ference on Informatics and Computational Sciences (ICICoS). IEEE, 2020, pp. 1–6.

(Citato a pagina 40)

48

Appendix

Table 1: Statistical Comparison of Mean MCC Among Learning Techniques. Values below

the diagonal are the differences between pairs of techniques. A negative value means

that the model in the row performed worse than the one in the column. Values above

the diagonal are the effect size.

NB LR SVM DT RF

NB - Medium Negligible Medium Medium

LR -0.17 - Small Large Large

SVM -0.01 0.16 - Medium Medium

DT 0.21 0.38 0.22 - Negligible

RF 0.22 0.39 0.23 0.01 -

Table 2: Nemenyi post-hoc test. In the context of a Nemenyi test, a p-value of 0.90 or 0.83 in

a pairwise comparison indicates that there is no statistically significant difference

between the groups being compared.

NB LR SVM DT RF

NB 1.00 0.00 0.83 0.00 0.00

LR 0.00 1.00 0.00 0.00 0.00

SVM 0.83 0.00 1.00 0.00 0.00

DT 0.00 0.00 0.00 1.00 0.90

RF 0.00 0.00 0.00 0.90 1.00

49

− Appendix

Table 3: MCC of each Defect Prediction Model based on PDG Metrics per Project

Project NB LR SVC DT RF

PyratLabs/ansible-role-k3s 0.19 0.14 0.23 0.34 0.34

anthcourtney/ansible-role-cis-amazon-linux 0.00 0.00 0.00 0.41 0.41

ansible-ThoTeam/nexus3-oss 0.23 0.13 0.51 0.71 0.70

automium/service-kubernetes 0.21 0.00 0.01 0.48 0.47

oVirt/ovirt-ansible-hosted-engine-setup 0.04 0.00 0.10 0.78 0.78

riemers/ansible-gitlab-runner 0.10 0.03 0.23 0.61 0.61

ansistrano/deploy 0.10 0.31 0.48 0.49 0.48

elastic/ansible-elasticsearch 0.29 0.21 0.55 0.78 0.79

sensu/sensu-ansible 0.02 0.00 0.03 0.07 0.07

cloudalchemy/ansible-grafana 0.21 0.24 0.34 0.72 0.71

openstack/openstack-ansible-os_nova 0.22 0.09 0.36 0.60 0.55

CSCfi/ansible-role-slurm 0.60 0.15 0.66 0.92 0.93

openwisp/ansible-openwisp2 0.40 0.33 0.57 0.69 0.69

cloudalchemy/ansible-prometheus 0.59 0.66 0.75 0.91 0.90

ANXS/postgresql 0.17 0.10 0.31 0.83 0.83

openstack/openstack-ansible-rabbitmq_server 0.21 0.05 0.13 0.7 0.73

galaxyproject/ansible-galaxy 0.47 0.31 0.37 0.67 0.70

Oefenweb/ansible-percona-server 0.00 0.04 0.39 0.91 0.91

UnderGreen/ansible-role-mongodb 0.56 0.68 0.71 0.77 0.75

ansible-community/ansible-nomad 0.64 0.30 0.57 0.89 0.89

openstack/openstack-ansible-os_neutron 0.13 0.00 0.00 0.79 0.79

AlbanAndrieu/ansible-jenkins-slave 0.14 0.24 0.18 0.29 0.38

CoffeeITWorks/ansible_burp2_server 0.42 0.45 0.53 0.74 0.72

DataDog/ansible-datadog 0.55 0.47 0.50 0.73 0.80

oVirt/ovirt-ansible-disaster-recovery 0.20 0.00 0.00 0.73 0.72

stackbuilders/sb-debian-base 0.50 0.00 0.26 0.29 0.26

evrardjp/ansible-keepalived 0.82 0.81 0.85 0.93 0.92

cloudalchemy/ansible-node-exporter 0.76 0.60 0.77 0.86 0.85

HanXHX/ansible-nginx 0.18 0.27 0.46 0.65 0.62

viasite-ansible/ansible-role-zsh 0.26 0.52 0.56 0.81 0.78

lae/ansible-role-proxmox 0.53 0.07 0.35 0.56 0.62

50

− Appendix

HanXHX/ansible-debian-bootstrap 0.70 0.00 0.79 0.76 0.78

nusenu/ansible-relayor 0.64 0.00 0.48 0.86 0.85

DavidWittman/ansible-redis 0.66 0.00 0.59 0.74 0.75

cloudalchemy/ansible-alertmanager 0.46 0.30 0.49 0.63 0.64

aalaesar/install_nextcloud 0.28 0.39 0.38 0.48 0.41

Oefenweb/ansible-postfix 0.88 0.90 0.94 0.97 0.97

caktus/tequila-django 0.68 0.37 0.74 0.91 0.94

ansible-community/ansible-vault 0.56 0.22 0.56 0.85 0.89

florianutz/Ubuntu1804-CIS 0.25 0.29 0.44 0.65 0.65

dj-wasabi/ansible-telegraf 0.59 0.49 0.58 0.53 0.58

rvm/rvm1-ansible 0.04 0.09 0.30 0.54 0.59

cloudalchemy/ansible-blackbox-exporter 1.00 1.00 1.00 1.00 1.00

tulibraries/ansible-role-airflow 0.07 0.00 0.00 0.00 0.00

idealista/mysql_role 1.00 0.00 0.12 1.00 1.00

Graylog2/graylog-ansible-role 0.20 0.00 0.00 0.00 0.19

mrlesmithjr/ansible-netdata 0.28 0.00 0.28 0.76 0.59

willshersystems/ansible-sshd 0.93 0.89 0.93 1.00 0.98

idealista/consul_role 0.86 0.00 0.86 0.86 0.86

ansible-lockdown/RHEL7-STIG 0.42 0.10 0.57 0.70 0.69

stone-payments/ansible-rabbitmq 1.00 0.00 0.17 1.00 1.00

naftulikay/ansible-role-degoss 0.31 0.31 0.31 0.53 0.53

CSCfi/ansible-role-users 1.00 1.00 1.00 1.00 1.00

mrlesmithjr/ansible-manage-lvm 0.09 0.00 0.12 0.13 0.13

cloudalchemy/ansible-pushgateway 1.00 0.00 0.00 0.95 1.00

antoiner77/caddy-ansible 0.60 0.56 0.60 0.53 0.57

idealista/nexus-role 0.13 0.00 0.00 0.00 0.00

Oefenweb/ansible-supervisor 0.71 0.77 0.65 0.88 0.88

kibatic/ansible-traefik 0.31 0.12 0.04 0.35 0.38

arillso/ansible.logrotate 0.04 0.00 0.00 0.17 0.08

m4rcu5nl/ansible-role-zerotier 0.33 0.33 1.00 1.00 1.00

fgci-org/ansible-role-cuda 0.55 0.00 0.00 0.00 0.33

dokku/ansible-dokku 0.65 1.00 0.91 0.84 0.84

linux-system-roles/storage 0.00 0.00 0.00 0.00 0.00

51

− Appendix

florianutz/Ubuntu1604-CIS 0.41 0.05 0.41 0.57 0.57

idealista/java_role 0.71 0.00 0.71 0.94 1.00

diodonfrost/ansible-role-mariadb 1.00 0.00 0.00 1.00 1.00

newrelic/infrastructure-agent-ansible 0.71 0.95 0.88 0.95 0.95

elastic/ansible-beats 0.45 0.15 0.00 0.50 0.43

wcm-io-devops/ansible-conga-ansible-controlhost 0.00 0.00 0.0 0.53 0.68

stackhpc/ansible-role-os-images 1.00 1.00 1.00 1.00 1.00

infOpen/ansible-role-docker 0.00 0.00 0.00 0.00 0.00

stackhpc/ansible-role-libvirt-vm 0.22 0.00 0.00 0.00 0.00

nwoetzel/ansible-role-eclipse 0.00 0.00 0.00 0.67 0.67

mimacom/ansible-role-bamboo 0.50 0.50 1.00 0.83 0.83

AlexeySetevoi/ansible-clickhouse 1.00 0.00 1.00 1.00 1.00

hadret/ansible-role-containers 0.12 0.12 0.12 0.12 0.12

infOpen/ansible-role-fail2ban 1.00 1.00 1.00 1.00 1.00

cloudalchemy/ansible-smokeping_prober 0.00 0.00 0.00 0.00 0.00

galaxyproject/ansible-galaxy-tools 0.00 0.00 0.00 0.00 0.00

Average mcc 0.42 0.25 0.41 0.63 0.64

Average rank 3.47 4.24 3.31 2.01 1.95

Table 4: Performance Statistics of Random Forest Across the 80 Repositories

count mean std min 25% 50% 75% max

Precision 80 0.70 0.30 0.00 0.60 0.79 0.92 1.00

Recall 80 0.71 0.31 0.00 0.55 0.83 0.97 1.00

F1 80 0.68 0.30 0.00 0.57 0.77 0.90 1.00

Mcc 80 0.64 0.31 0.00 0.46 0.71 0.89 1.00

Auc-pr 80 0.79 0.23 0.00 0.67 0.86 0.96 1.00

52

− Appendix

Table 5: Performance Statistics of Decision Tree Across the 80 Repositories

count mean std min 25% 50% 75% max

Precision 80 0.70 0.31 0.00 0.61 0.81 0.92 1.00

Recall 80 0.69 0.33 0.00 0.56 0.81 0.96 1.00

F1 80 0.67 0.31 0.00 0.53 0.77 0.90 1.00

Mcc 80 0.63 0.32 0.00 0.48 0.71 0.88 1.00

Auc-pr 80 0.79 0.21 0.00 0.67 0.86 0.94 1.00

Table 6: Nemenyi pairwise comparisons test between set of metrics. Comparisons of

Delta with Delta+PDG, Process with Process+PDG, and Delta+Process with

Delta+Process+PDG metrics show a statistically significant difference in perfor-

mance. Sets of metrics that additionally contain PDG metrics perform better than

sets that do not contain PDG metrics. On the other hand, sets of metrics that contain

ICO metrics, e.g., ICO, ICO+Delta, ICO+Process, and ICO+Delta+Process, have

performances that are not statistically different from their respective sets with PDG

metrics added.

δ ICO P δ+ICO δ+P ICO+P δ+ICO+P

PDG+δ 0,00 0,00 0,00 0,00 0,00 0,00 0,09

PDG+ICO 0,00 0,90 0,00 0,28 0,00 0,01 0,00

PDG+P 0,00 0,00 0,00 0,00 0,00 0,00 0,01

PDG+δ+ICO 0,00 0,90 0,00 0,90 0,00 0,75 0,04

PDG+δ+P 0,00 0,00 0,00 0,00 0,00 0,00 0,00

PDG+ICO+P 0,00 0,62 0,00 0,90 0,00 0,90 0,42

PDG+δ+ICO+P 0,00 0,00 0,00 0,71 0,00 0,90 0,90

δ = Delta Metrics P = Process Metrics

ICO = IaC-Oriented Metrics PDG = PDG Metrics

53

Acknowledgements

I would like to express my deep gratitude to all those who helped make this thesis possible.

Their knowledge, support, and inspiration have been fundamental to my academic and

personal journey. Many thanks to everyone who shared this extraordinary adventure with

me. In a special way, I would like to extend sincere thanks to my mother and father. Your love,

constant support, and trust in me have been the main driving force behind my achievement.

Without you, it would not have been possible. Thank you from the bottom of my heart for

everything you have done for me.

	List of Figures
	List of Tables
	Introduction
	Application Context
	Motivations and Objectives
	Results Obtained
	Structure of Thesis

	Background
	DevOps and Infrastructure-as-Code
	Machine Learning and Defect Prediction
	Program Dependence Graph

	Program-Dependence-Graph-based Metrics for Ansible
	Task-level Program Dependence Graphs for Ansible
	PDG-based Metrics for Ansible

	Research Methodology
	Research Questions
	Context Selection
	Empirical Study Variables
	Machine Learning for Defect Prediction
	RQ1 - In Search of Suitable Program Dependency Graph Metrics for Defect Prediction Models
	RQ2 - In Search of the Best Defect Prediction Model based on Program Dependency Graph Metrics
	RQ3 - Complementarity between the PDG Metrics-based Model and the Baselines
	RQ4 - On the Performance of the Baselines and a Novel ``Hybrid" Model

	Data analysis and results
	Metrics Extraction
	RQ1 - In Search of Suitable Program Dependency Graph Metrics for Defect Prediction Models
	RQ2 - In Search of the Best Defect Prediction Model based on Program Dependence Graph Metrics
	RQ3 - Complementarity between the PDG Metrics-based Model and the Baselines
	RQ4 - On the Performance of the Baselines and a Novel ``Hybrid" Model

	Discussion, Limitations, and Implications
	Threats to Validity
	Conclusion
	Bibliography
	Appendix

