
DARTS 2.0
Iuliano Gerardo, La Monica Tiziano

University of Salerno

July 2022

Abstract

Our work is based on the detection of test smell. The aim of the project is to improve the DARTS
plug-in by implementing new detectors that are able to detect the presence of one or more test
smells. What we achieved is a new release of the plug-in that offers new functionality.

1. Context of the project

DARTS (Detection And Refactoring of
Test Smells) is an Intellij plug-in which
implements a state-of-the-art detection

mechanism to detect instances of three test
smell types, i.e., General Fixture, Eager Test,
and Lack of Cohesion of Test Methods. The
plugin allows you to perform automatic refac-
toring only at the end of the analysis, after
having produced the data necessary for the
identification and elimination of the Test Smell.

2. Problem Description

Unit test code, just like regular/production
source code, is subject to bad programming
practices, known also as anti-patterns, defects
and smells. Smells, being symptoms of bad
design or implementation decisions, has been
proven to be responsible for decreasing the
quality of software systems from various as-
pects, such as making it harder to understand,
more complex to maintain, and more prone to
errors and bugs.

Test smells are defined as bad programming
practices in unit test code (such as how test
cases are organized, implemented and interact
with each other) that indicate potential design
problems in the test source code.

3. Solution

Refactoring is a disciplined technique for re-
structuring an existing body of code, altering
its internal structure without changing its ex-
ternal behavior.

Its heart is a series of small behavior pre-
serving transformations. Each transformation
(called a "refactoring") does little, but a se-
quence of these transformations can produce
a significant restructuring. Since each refactor-
ing is small, it’s less likely to go wrong. The
system is kept fully working after each refac-
toring, reducing the chances that a system can
get seriously broken during the restructuring.

First, however, we need to identify the test
smells.

4. Goal of the project

The goal of project is improve DARTS by
adding new test smell detectors such us Con-
ditional Test Logic, Constructor Initialization,
Duplicate Assert, Exception Handling, Ignored
Test and Magic Number Test. The change con-
sists in implementing new detectors for tests
smell. DARTS implements two types of de-
tection, structural and textual. Researchers
have devised tools and techniques to detect
code smells in software systems. Most of them
are based on the analysis of the properties ex-
tractable from the source code (e.g., method
calls) by means of a combination of structural

1



metrics, while in recent years the use of alterna-
tive sources of information (i.e., historical and
textual analysis) have been explored, together
with methodologies based on machine learn-
ing and search-based algorithms. The textual
detection of code smells is able to identify code
smells using a three step process, i.e., (i) textual
content extraction, (ii) application of IR normal-
ization process, and (iii) application of specific
heuristics in order to detect code smells related
to promiscuous responsibilities. The detection
is going to base on structural information.

5. Test smells and structural

rules

To detect the presence of a test smell we need
to understand what caused it. Each test smell
has one or more characteristics that allow us
to be able to identify them. Given the nature
of the smells to be identified, analyzing the
code from a structural point of view is suffi-
cient to identify the presence of one of them.
Some types of test smells are very subjective or
depend on the characteristics of the software.
Large software can have a tolerance towards
a smell different than a smaller software. The
presence can be determined by the tuning of
some thresholds set by the programmer or by
the tester.

5.1. Conditional Test Logic

Test methods need to be simple and execute all
statements in the production method. Condi-
tions within the test method will alter the be-
havior of the test and its expected output, and
would lead to situations where the test fails to
detect defects in the production method since
test statements were not executed as a condi-
tion was not met. Furthermore, conditional
code within a test method negatively impacts
the ease of comprehension by developers.

• Detection: A test method that contains one
or more control statements (i.e if, switch,
conditional expression, for, foreach and

while statement). The detection makes use
of a threshold from 0 to 5.

5.2. Constructor Initialization

Ideally, the test suite should not have a con-
structor. Initialization of fields should be in the
setUp() method. Developers who are unaware
of the purpose of setUp() method would give
rise to this smell by defining a constructor for
the test suite.

• Detection: A test class that contains a con-
structor declaration.

5.3. Duplicate Assert

This smell occurs when a test method tests for
the same condition multiple times within the
same test method. If the test method needs
to test the same condition using different val-
ues, a new test method should be utilized; the
name of the test method should be an indi-
cation of the test being performed. Possible
situations that would give rise to this smell
include: (1) developers grouping multiple con-
ditions to test a single method; (2) developers
performing debugging activities; and (3) an
accidental copy-paste of code.

• Detection: A test method that contains
more than one assertion statement with
the same parameters.

5.4. Exception Handling

This smell occurs when a test method explicitly
a passing or failing of a test method is depen-
dent on the production method throwing an
exception. Developers should utilize JUnit’s
exception handling to automatically pass/fail
the test instead of writing custom exception
handling code or throwing an exception.

• Detection: A test method that contains
either a throw statement or a catch clause.
The detection makes use of a threshold
from 0 to 5.

2



5.5. Ignored Test

JUnit 4 provides developers with the ability to
suppress test methods from running. However,
these ignored test methods result in overhead
since they add unnecessary overhead with re-
gards to compilation time, and increases code
complexity and comprehension.

• Detection: A test method or class that con-
tains the @Ignore annotation.

5.6. Magic Number Test

Occurs when assert statements in a test method
contain numeric literals (i.e., magic numbers)
as parameters. Magic numbers do not indicate
the meaning/purpose of the number. Hence,
they should be replaced with constants or vari-
ables, thereby providing a descriptive name for
the input.

• Detection: An assertion method that con-
tains a numeric literal as an argument.

6. Testing

Testing was done using the category partition.
The parameters for testing are the project and
the threshold. For the project was identified
the category "number of instances", while for the
threshold the "values in range" and the "values
out of range". The choices for the number of
instances are: 0 instance, 1 instance and 2 or
more instance. The choices for values in range
are: 0, 2, and 5. While for out of range are:
-1 and 6. Furthermore, regression testing was
executed to verify the correct functioning of
the plugin after the changes.

Figure 1: Test Result

7. Test Result

69 tests were obtained, 42 derived from the
category partition and the remainder were ob-
tained through a white-box approach and the
use of CFG.

References

[1] [Software Unit Test Smell] Web Site:
https://testsmells.org

[2] [Refactoring.com] Web Site:
https://refactoring.com

[3] [Code Smell: Relevance of the Problem and
Novel Detection Techniques] Research The-
sis: http://elea.unisa.it/handle/10556/2566

3


	Context of the project
	Problem Description
	Solution
	Goal of the project
	Test smells and structural rules
	Conditional Test Logic
	Constructor Initialization
	Duplicate Assert
	Exception Handling
	Ignored Test
	Magic Number Test

	Testing
	Test Result

